• Title/Summary/Keyword: Force decay

Search Result 66, Processing Time 0.04 seconds

A Dimensionless Index for Quantitative Evaluation of Apple Freshness

  • Cho, Y.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 2000
  • Though the freshness for agricultural products is an important factor related to their quality management, this terminology is being used restrictedly because it is very subjective. In this study, a dimensionless index which had the span of the maximum of 1 through the minimum of 0 was proposed to describe freshness of the product with time-variant quality and was applied to Tsugaru and Fuji apples. First, the compressive properties having the linearity in their change regarding time elapsed after harvest were selected. For Tsugaru apple, bio-yield and rupture forces had high correlation with time while for Fuji, bio-yield and rupture deformations had high correlations. When the slope, or ratio of force to deformation, was considered, the effect of cultivar could be neglected. When the linearly time-variant compressive properties for Tsugaru and Fuji apples were involved in the freshness indices, they described well freshness of apples. Also, the freshness decay constant depicted a characteristic which related to freshness decay rate. Therefore, the freshness index can be utilized to manage the quality during storage and distribution of apples.

  • PDF

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

Mathematical approach for optimization of magnetohydrodynamic circulation system

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.654-664
    • /
    • 2019
  • The geometrical and electromagnetic variables of a rectangular-type magnetohydrodynamic (MHD) circulation system are optimized to solve MHD equations for the active decay heat removal system of a prototype Gen-IV sodium fast reactor. Decay heat must be actively removed from the reactor coolant to prevent the reactor system from exceeding its temperature limit. A rectangular-type MHD circulation system is adopted to remove this heat via an active system that produces developed pressure through the Lorentz force of the circulating sodium. Thus, the rectangular-type MHD circulation system for a circulating loop is modeled with the following specifications: a developed pressure of 2 kPa and flow rate of $0.02m^3/s$ at a temperature of 499 K. The MHD equations, which consist of momentum and Maxwell's equations, are solved to find the minimum input current satisfying the nominal developed pressure and flow rate according to the change of variables including the magnetic flux density and geometrical variables. The optimization shows that the rectangular-type MHD circulation system requires a current of 3976 A and a magnetic flux density of 0.037 T under the conditions of the active decay heat removal system.

Hydrodynamic coupling distance between a falling sphere and downstream wall

  • Lin, Cheng-Chuan;Huang, Hung-Tien;Yang, Fu-Ling
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In solid-liquid two phase flow, the knowledge of how descending solid particles affected by the presence of downstream wall is important. This work studies at what interstitial distance the velocity of a vertically descending sphere is affected by a downstream wall as a consequence of wall-modified hydrodynamic forces through a validated dynamic model. This interstitial distance-the hydrodynamic coupling distance ${\delta}_c-is$ found to decay monotonically with the approach Stokes number St which compares the particle inertia to viscous drag characterized by the quasi-steady Stokes' drag. The scaling relation ${\delta}_c-St-1$ decays monotonically as literature below the value of St equal to 10. However, the faster diminishing rate is found above the threshold value from St=10-40. Furthermore, an empirical relation of ${\delta}_c-St$ shows dependence on the drop height which clearly indicates the non-negligible effect of unsteady hydrodynamic force components, namely the added mass force and the history force. Finally, we attempt a fitting relation which embedded the particle acceleration effect in the dependence of fitting constants on the diameter-scaled drop height.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

The Analysts of PerformaneeCharacterlstics of a L.I.M. with taken into Conslderatlon of End Effects(l) (단부효과를 고려한 L.I.M.의 동작특성 해석 (1))

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.288-295
    • /
    • 1982
  • In this study, the characteristic equation of a double sided short stator linear induction motor, referred to as LIM excited by equivalent current sheet having linear current density was derived using Maxwell's electromagnetic field theory with its entry and exit, end effects taken into consideration. According to the treatment of several physical phenomena in the air-gap i.e. the magnetic flux density distributions, thrust-force, forward and backward travelling wave with decay, normal field, the fundamental data in this study are made reference to improve the characteristics of LIM, effectual electro-magnetic energy conversion devices.

  • PDF

Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control (바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어)

  • Liang Hong;Choi Yong-Ho;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

Quantitative Analysis on the Variations of Ground Reaction Force during Ascent and Descent of Bus Stairs in Women

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • Objective: The aim of the study was to compare & analyze on the variations of ground reaction force during ascending and descending of bus stair. Method: Simulated wooden stair of bus (raiser: 37.66 cm, width: 109 cm, tread: 29 cm) and GRF system (AMTI-OR-7/ AMTI., USA) was set up within experimental room. Adult female (n=8) performed ascending & descending of simulated bus stair, and variables analyzed consisted of TT (transfer-time), PVF (peak vertical force), LR (loading rate), DR (decay rate), CV (coefficient of variation) and AI (asymmetry index). Sample data from GRF cut off at 1,000 Hz. Results: TT showed shortest variation at phase 1 during descending, but longest variation at phase 1 during ascending of stair. PVF19 (Fz2, 100%) showed large pattern during descending than that of ascending, but rather showed small pattern during ascending of stair in case of PVF2 (Fz4). LR showed larger pattern during descending than that of ascending, but rather during ascending of stair in case of DR. Variation of CV (%) did not show difference between LR and DR, but showed higher possible occurrence of variation during descending of stair. Also AI (%) showed higher index during ascending than that of descending of stair. Conclusion: Because introduction of lowered bus stair has various realistic problems, if lined up at designated bus stopage exactly, rather can solve problems of inconvenience, reduce impulsive force and secure a stability of COG during ascending & descending of stair.

A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction (마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구)

  • 윤영진;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.