• Title/Summary/Keyword: Force Ripple

Search Result 172, Processing Time 0.03 seconds

Influence of Harmonic Modulator Shape on the Cogging Force of Magnetic Gear (고조파 조절기 형상이 자석 기어의 코깅 자기력에 미치는 영향 분석)

  • Kwangsuk, Jung
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • The reduction ratio of the magnetic gear is determined by the ratio of the number of poles between the high-speed permanent magnet layer and the low-speed permanent magnet layer. In general, it is known that the greater the least common multiple of both poles, the smaller the torque ripple called by cogging of the magnetic force generated in the magnetic gear. However, little is known about the effect of the harmonic modulator that filters the magnetic field in the magnetic gear to magnetically couple the high-speed side and the low-speed side except for the number of poles. In this study, torque ripple characteristics according to changes in modulator shape such as opening ratio and tooth thickness are analyzed using a finite element analysis tool.

Nonlinear Adaptive Control for Position Synchronization of a Gantry-Moving-Type Linear Motor (겐트리형 리니어 모터의 동기화를 위한 비선형 적응제어)

  • Han, Sang-Oh;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1925-1930
    • /
    • 2010
  • For high-speed/high-accuracy position control of a gantry-moving-type linear motor, we propose a nonlinear adaptive controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated via computer simulations.

A Study on the Electrical Magnetic Excitation Force and Noise Characteristics in Motor of Interior Permanent magnetic Type (영구자석 매입형 BLDC 모터의 전자기적 가진력 및 소음특성에 관한 연구)

  • Ko, Hong-Seok;Eun, Hee-Kwang;Kim, Kwang-Joon;Shin, Hyoun-Jeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1139-1146
    • /
    • 2000
  • The frequencies of principal noise in interior permanent motor originate form two sources. One is torque ripple that is composed of cogging torque, magnetic torque ripple and reluctance torque ripple. The other is induced by natural frequencies. In this paper, the torque ripple and its influence on noise was examined by theoretical analysis. Understanding relation of dynamic characteristics and noise, natural frequencies and mode shapes were obtained by experimentation and operational deflection shape was observed. Finally, the method of predicting frequencies of principal noise was proposed.

  • PDF

Rotor Shape Design for Minimization Torque Ripple of Switched Reluctance Motor (SRM 토오크리플 저감을 위한 회전자 형상 설계)

  • Oh, Ju-Hwan;Kwon, Byoung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1291-1293
    • /
    • 2005
  • Switched reluctance motors have the advantage a high torque/weight ratio, as the large reluctance torque is made by salient poles of both stator and rotor, and a high reliability. On the other hand, the switched reluctance motors have the disadvantage of a large ripple torque which is made by salient poles. So the application for the industrial fields have been limited to special cases. This paper describes the design of a 12/8 switched reluctance motor using a enemy layer method of the asymmetry rotor. The design is focussed to reduce the torque ripple and radial force in the demanded value. The three dimension finite element analysis method(3D-FEM) was used for decides a enemy layer angle of the asymmetry rotor. This paper presents modifications of the rotor pole shape which reduces the torque ripple.

  • PDF

Electromagnetic Force Analysis of BLDC Motor for Hard Disk Drive (하드디스크 구동용 BLDC 전동기의 전자력 해석에 관한 연구)

  • Park, Seung-Chan;Yun, Tae-Ho;Gwon, Byeong-Il;Yun, Hui-Su;Won, Seong-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.476-483
    • /
    • 1999
  • In this paper, electromagnetic forces acting on the rotor surface of a BLDC motor for hard disk drive are calculated by the finite element field analysis. The frequency characteristics of torque ripple, local force and unbalanced magnetic force as a source of mechanical vibration area analyzed. Ring-type permanent magnets for the brushless DC motor are apt to have different magnetization levels at each pole because of the unbalanced air gap between the magnet surface and the magnetizer fixture during the multi-poles magnetizing process. This paper discusses the effect of the unsymmetric magnetization distribution in the permanent magnet on the brushless DC motor performances. As a result, the unbalanced magnetic force acting on the rotor surface and the torque ripple are examined for the motor with an unsymmetric magnetization distribution, and compared with those of an ideally symmetric motor.

  • PDF

Analysis and Design of 12/14 Bearingless Switched Reluctance Motor for Self-Starting and Torque Ripple Reduction (자기기동 및 토크리플 저감을 위한 12/14 베어링리스 SRM의 설계 및 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.682-684
    • /
    • 2015
  • A 12/14 bearingless switched reluctance motor (BLSRM) with hybrid stator poles has been proposed due to the outstanding decoupling characteristics between the torque and suspending force. However, the motor is a two-phase motor. The output torque of the motor has torque dead zone and high torque ripple. Hence, the motor cannot self-start at some rotor positions. To solve the self-starting problems and reduce the torque ripple, a stepped rotor is proposed in this paper. Then, the motor with the stepped rotor is optimally designed. In the new designed motor, the majority parameters are kept the same with those of original motor; only the torque pole arc and rotor pole shape are optimally designed. The characteristics of the redesigned motor, such as inductance, torque and suspending force, are analyzed and compared with those in the original motor. Finally, the effectiveness of the proposed method is verified by the simulation results.

  • PDF

Detent Force Reduction in a Cylindrical Type PMLSM (원통형 영구자석 선형 동기전동기의 디텐트력 저감)

  • Lee, Jong-Jin;Youn, Sung-Whan;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.209-215
    • /
    • 2006
  • Recently Permanent Magnet Linear Synchronous Motors(PMLSMs) are widely used for many linear transportation applications. The PMLSM has many advantages such as simple structure, high speed and thrust. However, especially in short primary type PMLSM, there exists very large detent force, which makes the thrust force ripple, undesired vibration and noise. The detent force is composed of the Cogging force and the End force. The Cogging force comes from the interaction between the permanent magnets and interior teeth of the stator. And the End force acts on the exterior teeth of the stator by the permanent magnets. Usually End force is larger than Cogging force, so the detent force is drasically reduced only by reducing the End force. This paper shows the End force is minimized by optimizing the stator length and chamfering the shape of the exterior teeth of the stator.

Design and Torque Ripple Analysis of Brush-less DC Motor According to Delta Winding Connection

  • Lee, Tae-Yong;Seo, Myung-Ki;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.166-175
    • /
    • 2015
  • In this study, we describe the design method of a Brush-less DC (BLDC) motor with delta winding connection. After designing delta winding connection model with the $60^{\circ}$ flat-top region of the Back Electro-Motive Force (BEMF), an ideal current source analysis and a voltage source analysis, with a 6-step control, were conducted primarily employing Finite Element Method. In addition, as a current controller, we considered the Current Regulator with PI controller using Simulink for the comparison of torque characteristics. When the input current is controlled, the switching regions and reference signals are determined by means of the phase BEMF zero-crossing point. In reality, the input current variation depends on the inductance as well as input voltage, and it causes a torque ripple after all. Therefore, each control method considered in this research showed different torque ripple results. Based on the comparison, the causes of the torque ripple have been verified in detail.

Topology Optimization of Linear Motor for Rope-less Elevator by Using Density Method and ON/OFF Method

  • Okamoto Yoshifumi;Takahashi Norio
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.233-237
    • /
    • 2005
  • The reduction of the ripple of driving force is especially required for the practical utilization of linear synchronous motor for rope-less elevator. In this paper, the magnetic region of the linear motor is optimized by using topology optimization techniques (density method and ON/OFF method) in order to reduce the ripple of driving force. The optimal results of both methods are compared, and useful information for the optimal design of linear motor is obtained.

Effects of V-Skew on the Torque Characteristic in Permanent Magnet Synchronous Motor

  • Lee, Jong Gun;Lee, Ki Wook;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.390-393
    • /
    • 2013
  • In this paper, we proposed how the V-skew applied of the rotor to inprove the characteristics of cogging torque in large PMSM. Large PMSM is difficult to apply a pitch of the diagonal magnetic skew because of the motor's structure and making. In addition, the force in the direction of z-axis occurs when the diagonal skew is applied. So we are applying the optimal v-skew to reduce torque ripple and cogging torque because this reduces the noise and vivration on the motor. Throug FEM dD analysis, we studied to find the optimal v-skew angle for reducing torque ripple.