• Title/Summary/Keyword: Force Motor

Search Result 1,472, Processing Time 0.03 seconds

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Design of Linear Synchronous Motor for Thrust Force Ripple Reduction using Module Phase Set Shift (Module Phase Set Shift를 이용한 선형 동기 전동기의 추력 리플 저감 설계)

  • Ryu, Gwang-Hyeon;Lee, Hyung-Woo;Cho, Su-Yeon;Oh, Se-Young;Ham, Sang-Hwan;Im, Jong-Bin;Ahn, Han-Woong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.848-849
    • /
    • 2011
  • Rotating machines are using gears to change the rotary motion into the linear motion, on the other hand, linear motors have a accurate position control and excellent dynamic characteristics because of generating a thrust force directly. But the important problem, one of the linear motor is a high thrust force ripple. Thrust force ripple has a bad effect on the position accuracy and the dynamic characteristics, so it is necessary to reduce the thrust force ripple. Cogging is one of the cause that affect thrust force ripple. Cogging has some connection with the GCD between pole pitch and teeth pitch It is proposed method to reduce a thrust ripple of the linear motor that chamfering, skew, and so on. In this paper, the module phase set shift(MPSS) is used to reduce a thrust force ripple that has a similar effect to skew. And propose a method that reduce a thrust force ripple more by use of chamfering.

  • PDF

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

The study of force control of servogun by using feedback current of the servo-motor (서보 모터의 피드백 전류를 이용한 서보건의 가압력 제어에 관한 연구)

  • 이용석;김태형;이세헌;이철구
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.126-128
    • /
    • 2003
  • Force is one of the most important variables with welding current and welding time in resistance spot welding. But a good farce control method hasn't been come out on servogun resistance spot welding system. In this study, we prove the feedback current of the servo-motor can be used to an excellent force measuring sensor and the force can be also controlled by the feedback current.

  • PDF

Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration (극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구)

  • Fang, Liang;Lee, Su-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.

A Study on the Thrust force and Normal force Characteristics of Linear Stepping Motor by 2D Finite Element Analysis (2차원 유한요소해석에 의한 선형 스텝핑 전동기의 추력 및 수직력 특성에 관한 연구)

  • 원규식;노채균;김동희;이상호;오홍석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.141-148
    • /
    • 2003
  • In the recently, the necessity of the hybrid type linear stepping motor(HLSM) of linear motion digital actuator has been increased in the various fields of the automatic control system. The HLSM is directly performed without any converting mechanism. Therefore, the HLSM is better advantaged in the efficiency and economical view than a rotary stepping motor. In this paper, we have designed an optimum tooth shape by the 2D finite element method(FEM) to develop the HLSM with longitudinal flux machine(LFM) type, and calculated the thrust force and normal force. And we have manufactured the prototype of it, and have experimented the thrust force characteristics of it.

The analysis of the resonance characteristics of a traveling wave type ultrasonic motor by applying the normal force and driving voltage (진행파 회전형 초음파 모터의 가압력과 구동전압에 따른 공진특성의 변화 분석)

  • Oh, Jin-Heon;Park, Cheol-Hyeon;Lim, Kee-Joe;Kim, Hyeon-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.324-324
    • /
    • 2008
  • Piezoelectric ceramics is an active element that makes stator to vibrate to generate rotational force in ultrasonic motors. In drive of ultrasonic motors, many factors that affect to the resonance characteristics of piezoelectric ceramics exist. For example, those factors are bonding condition with elastic body, the magnitude of electric field, the normal force for frictional drive and the emission of heat due to vibration and friction and so on. Therefore, it is important to research the inclination of property variation of piezoelectric ceramics in circumstance that has complex elements. In this paper, we focused and analyzed the resonance characteristics of ultrasonic motor due to the magnitude of the driving voltage and normal force.

  • PDF

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.