• 제목/요약/키워드: Force Measurement

검색결과 1,622건 처리시간 0.032초

산소 유량비 변화에 따른 Al 도핑된 ZnO 박막의 구조 및 광학적 특성 (Effects of Oxygen Flow Ratio on the Structural and Optical Properties of Al-doped ZnO Thin Films)

  • 손영국;황동현;조신호
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.267-272
    • /
    • 2007
  • 라디오파 마그네트론 스퍼터링 방법으로 유리 기판 위에 Al 도핑된 ZnO (AZO) 박막을 성장시켰다. 증착시 스퍼터링 가스로 사용하는 산소 유량비의 변화에 따른 AZO 박막의 특성을 X-선 회절법, 원자 주사 현미경, 홀 효과 측정법으로 조사하였다. 증착 온도 $400^{\circ}C$에서 산소 유량비 0%로 증착된 AZO 박막은 가장 큰 c-축 우선 배향성과 최저의 비저항값 $6.9{\times}10^{-4}{\Omega}cm$을 나타내었다. 산소 유량비가 증가함에 따라 ZnO (002)면의 회절 피크의 세기는 실질적으로 감소하는 경향을 보였다. 또한, 산소 유량비가 감소함에 따라 전하 운반자의 농도와 홀 이동도는 증가하였으나, 전기 비저항은 감소하였다.

Effect of Substrate Temperature and Post-Annealing on Structural and Electrical Properties of ZnO Thin Films for Gas Sensor Applications

  • 도강민;김지홍;노지형;이경주;문성준;김재원;박재호;조슬기;신주홍;여인형;문병무;구상모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.105-105
    • /
    • 2011
  • ZnO is a promising material since it could be applied to many fields such as solar cells, laser diodes, thin films transistors and gas sensors. ZnO has a wide and direct band gap for about 3.37 eV at room temperature and a high exciton binding energy of 60 meV. In particular, ZnO features high sensitivity to toxic and combustible gas such as CO, NOX, so on. The development of gas sensors to monitor the toxic and combustible gases is imperative due to the concerns for enviromental pollution and the safety requirements for the industry. In this study, we investigated the effect of substrate temperature and post-annealing on structural and electrical properties of ZnO thin films. ZnO thin films were deposited by pulsed laser deposition (PLD) at various temperatures at from room temperature to $600^{\circ}C$. After that, post-annealing were performed at $600^{\circ}C$. To inspect the structural properties of the deposited ZnO thin films, X-ray diffraction (XRD) was carried out. For gas sensors, the morphology of the films is dominant factor since it is deeply related with the film surface area. Therefore, the atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) were used to observe the surface of the ZnO thin films. Furthermore, we analyzed the electrical properties by using a Hall measurement system.

  • PDF

온실에서 방울토마토 수확작업시 작업자의 생리학적 및 생체역학적 반응 측정 (Measurement of Worker's Physiological and Biomechanical Responses during the Cherry Tomato Harvesting Work in a Greenhouse)

  • 선우훈;임기택;김장호;손현목;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제36권3호
    • /
    • pp.223-230
    • /
    • 2011
  • Physiological signals such as body temperature, heart rate, blood pressure and heart rate variability and biomechanical workload for stress analysis were investigated during the cherry tomato harvesting work in a greenhouse. The skin temperatures raised $0.05^{\circ}C$/min, $0.03^{\circ}C$/ min, and $0.08^{\circ}C$/min in standing, stooping and squatting postures, respectively. Breath rate significantly increased from 18 to 28 breaths/min during the cherry tomato harvesting work. As the heart rate during the work ranged from about 72 to 110 beats/min (bpm), the cherry tomato harvesting work appeared to be a light intensity task of less than 110 bpm. The worker's average energy consumption rate in three positions during 43 min working time was 65.74 kcal (91 kcal/h in 70 kg). This was a light intensity of work, compared to 75 kcal/h in 70 kg of basic metabolic energy consumption rate of a worker with 70 kg weight; The maximum shear force on the disk (L5/ S1) due to static workload in the cherry tomato harvesting work was 446 N in the stooping posture, 321 N in the squatting posture and 287 N in the standing posture. Acute stress index expressed with the heart rate variability, increased parasympathetic activation up to about 70 while workers were doing most agricultural work in this study. This study provided a system to measure quantitatively workers' physiological change, kinematics and kinetic factors without any restrictions of space in the greenhouse works.

화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구 (A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin)

  • 권영하;권현준;랑문정;이수민
    • 감성과학
    • /
    • 제8권4호
    • /
    • pp.385-391
    • /
    • 2005
  • 화장품을 바를 때 피부와 손가락 사이에서 일어나는 마찰계수는 화장품의 주관적 평가에 많은 영향을 주는 요소이다. in-vivo상태에서 피부와 접촉자 간의 마찰계수는 접촉자의 모양이나 거칠기의 정도 그리고 누르는 하중에 따라 변할 수 있다. 본 실험에서는 리니어 모터와 다축 로드셀을 이용하여 여러 가지 접촉자를 in-vivo상태에서 직접 피부에 접촉시키고 실시간으로 마찰계수를 측정할 수 있는 장치를 개발하였다. 이 장치를 이용하여 피부와 접촉자 간의 마찰계수를 측정하고 그 데이터를 화장품을 바를 때의 전후와 비교$\cdot$분석하였다. 또한 화장품을 바를 때 주관적인 평가에서 이용되는 형용사를 조사하며 마찰계수와의 그 상관관계를 분석하였다. 그 결과, 피부와 접촉자 간의 마찰계수는 화장품의 종류와 접촉자의 성질에 따라 0.17-1.2사이에서 나타나며, 주관적인 평가 또한 화장품을 바른 후 시간의 경과함에 따라 변하며, 그것은 마찰계수와 관련이 있음을 확인할 수 있었다.

  • PDF

토탈스테이션과 RTK-GPS 측량을 이용한 수치지적측량의 작업효율성 비교 (Comparing Efficiency of Numerical Cadastral Surveying Using Total Station and RTK-GPS)

  • 홍성언
    • 대한공간정보학회지
    • /
    • 제15권3호
    • /
    • pp.87-96
    • /
    • 2007
  • 현재 수치지적 시행 지역에서의 지적측량은 전자측판 측량을 이용하는데, 이는 측량부분에 토탈스테이션과 이로 취득된 좌표정보를 기록 편집을 위한 컴퓨터 시스템으로 구성되어 있다. 본 연구에서는 토탈스테이션을 대체하여 RTK-GPS 측량으로 경계점의 좌표를 취득하고 자료처리와 결선처리 등은 기존의 컴퓨터 시스템을 이용함으로써 수치지적측량의 효율성을 제시하고자 하였다. 연구결과, RTK-GPS측량 성과를 기존 전자측판(토탈스테이션)성과와 비교한 결과 거의 차이가 없었고, 소요시간과 소요인력을 분석한 결과 현행 토탈스테이션을 이용한 전자측판 측량보다 많이 줄일 수 있는 것으로 나타났다. 이외에도 전자측판 시스템을 이용하여 현장에서 자료처리 및 결선작업 등이 이루어질 수 있도록 함으로써 수치지적시행 지역에서 효율적인 측량방법이 될 수 있을 것으로 기대된다.

  • PDF

인공신경망을 이용한 터널시공 시 계측결과 분석에 관한 연구 (A Study on Instrumentation Results Analysis Using Artificial Neural Network in Tunnel Area)

  • 이종휘;이동근;변요셉;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.21-31
    • /
    • 2010
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to get it practically on considering various geography and geotechnical condition. So construction management of information concept is required to manage immediately on the field condition because it is very time-consuming to establish the countermeasure of underground reinforcement and the pattern change of Bo. Therefore, when construction is on tunnel area, examination of accurate safety and prediction of behavior is performed to overcomes the limit of predicting behavior by using Artificial Neural Network(ANN) in this study. Firstly, the field data was secured. Secondly, suitable structure was made on multi-layer perceptrons among the ANN. Thirdly, learning algorithm-propagated applies to ANN. The data for the learn of field application using ANN was used by considering impact factors, which influenced the behavior of tunnel, and performing credibility analysis. crown displacement, spring displacement, subsurfacement, and rock bolt axial force are predicted at the tunnel construction and on-site application was confirmed by using ANN from analyzing and comparing with measurement value of on-site. In this study, the data from Seoul Highway $\bigcirc\bigcirc$ tunnel section was applied to the ANN Theory, and the analysis on the investigate value and the reasoning for the value associated with field application was performed.

  • PDF

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Fabrication of Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and YIGSR Peptides

  • Choi, Won-Sup;Bae, Jin-Woo;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Mi-Hee;Park, Jong-Chul;Kwon, Il-Keun
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.458-463
    • /
    • 2009
  • Polyurethane (PU) is widely used as a cardiovascular biomaterial due to its good mechanical properties and hemocompatibility, but it is not adhesive to endothelial cells (ECs). Cell adhesive peptides, GRGDS and YIGSR, were found to promote adhesion and spreading of ECs and showed a synergistic effect when both of them were used. In this study, a surface modification was designed to fabricate an EC-active PU surface capable of promoting endothelialization using the peptides and poly(ethylene glycol) (PEG) spacer, The modified PU surfaces were characterized in vitro. The density of the grafted PEG on the PU surface was measured by acid-base back titration to the terminal-free isocyanate groups. The successful immobilization of pep tides was confirmed by amino acid analysis, following hydrolysis, and contact angle measurement. The uniform distribution of peptides on the surface was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). To evaluate the EC adhesive property, cell viability test using human umbilical vein EC (HUVEC) was investigated in vitro and enhanced endothelialization was characterized by the introduction of cell adhesive peptides, GRGDS and YIGSR, and PEG spacer. Therefore, GRGDS and YIGSR co-immobilized PU surfaces can be applied to an EC-specific vascular graft with long-term patency by endothelialization.

입자영상유속계를 이용한 자항상태 모형선의 프로펠러 후류 계측 (Propeller Wake Measurement of a Model Ship in Self Propulsion Condition using Towed Underwater PIV)

  • 서정화;유극상;임태구;설동명;한범우;이신형
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.171-177
    • /
    • 2014
  • A two-dimensional particle image velocimetry (2D PIV) system in a towing tank is employed to measure a wake field of a very large crude oil carrier model with rotating propeller in self propulsion condition, to identify characteristics of wake of a propeller working behind a ship. Phase-averaged and time-averaged flow fields are measured for a horizontal plane. Scale ratio of the model ship is 1/100 and Froude number is 0.142. By phase-averaging technique, trajectories of tip vortex and hub vortex are identified and characteristic secondary vortex distribution is observed in the hub vortex region. Propeller wake on the starboard side is more accelerated than that on the port side, due to the difference of inflow of propeller blades. The hub vortex trajectory tends to face the port side. With the fluctuation part of the phase-averaged velocity field, turbulent kinetic energy (TKE) is also derived. In the center of tip vortex and hub vortex region, high TKE concentration is observed. In addition, a time-averaged vector field is also measured and compared with phase-averaged vector field.

충전된 고무재료의 열변화에 따른 수축력/팽창력 측정 (Measurement of Thermal Shrinkage/Expansion Force of Filled Rubber)

  • 박상민;홍창국;조동련;강신영
    • Elastomers and Composites
    • /
    • 제42권4호
    • /
    • pp.201-208
    • /
    • 2007
  • 본 연구에서는 충전된 고무재료의 온도 변화에 대한 치수 안정성을 고찰하기 위해 카본블랙 또는 실리카가 충전된 NR과 SBR의 열변화시 발생하는 수축력과 팽창력을 측정하였다. 일정 길이로 인장된 시편의 온도를 올렸을 때 고무사슬의 엔트로피적 변화에 의해 수축력이 발생하였다. 카본블랙이나 실리카가 첨가된 NR의 경우 충전제 함량이 증가함에 따라 최대 열수축력 값이 감소하였으나, SBR의 경우는 30 phr 함량에서 미충전 고무보다 높은 열수축력 값을 보였다. 압축된 시편의 열팽창력 측정의 경우, 카본블랙을 첨가한 NR의 열팽창력은 거의 변화가 없었으나, SBR은 카본블랙 양의 증가와 함께 최대 팽창력 값이 증가하였다. 실리카를 첨가했을 경우 NR, SBR시편 모두 첨가량이 증가할수록 최대 열팽창력 값이 증가하였다.