• 제목/요약/키워드: Force Convection

검색결과 93건 처리시간 0.037초

유한 요소법을 이용한 $CO_2$아아크 용접부의 용입깊이와 열영향부 크기 예측 (Prediction of Penetration and Heat Affected Zone by Using Finite Element Method in $CO_2$ Arc Welding)

  • 이정익;박일철;박기영;엄기원
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.222-229
    • /
    • 1992
  • A prediction of penetration and heat affected zone by using Finite Element Method in CO$_{2}$ Arc Welding has been discussed this paper. The temperature distribution of a base metal produced by the CO$_{2}$ arc welding processing is analyzed by using a three dimensional finite element model. The common finite element program ANSYS 4.4A was employed to obtain the numerical results. Temperature dependent material properties, effect of latent heat, and the convective boundary conditions are included in the model. Numerically predicted sizes of the penetration and the heat affected zone are compared with the experimentally observed values. As a result, there was a slight difference between numerical analysis values and experimentally observed values. For in the case of heat affected zone, it was not considered a precise forced convective coefficient value, and in the case of penetration, it was not, considered a arc force.

  • PDF

에너지 절약을 위한 벽체형 열다이오드 개발에 관한 기초 (A Fundamental Study on Development of a Wall Structure type Thermal Diode for Energy Saving)

  • 박이동;장영근;최성식
    • 태양에너지
    • /
    • 제17권3호
    • /
    • pp.67-73
    • /
    • 1997
  • 공기는 열전도 계수가 낮으므로 밀폐공간 내에서 적당한 형태를 형성하여 자연대류 열전달을 촉진 시키다면 태양열 집열기로서 건물 난방에 이용할 수 있고, 또 자연대류가 일어나지 않도록 유동을 억제 시킨다면 매우 훌륭한 단열재로 사용할 수 있다. 따라서, 본 연구에서는 건물벽 구조에 따라 내 외벽 사이에 단순 사각 밀폐공간을 형성하여 외벽의 가열부와 내벽의 방열부의 위치를 변화시켜 가며 수치해석을 수행하여 최대 난방 및 단열효과를 얻을 수 있는 새로운 대체 건물벽 개발에 관한 기초 설계 자료를 제시하고자 한다. 연구 결과 부력에 의한 driving force를 얻기 위해서는 방열부가 가열부보다 항상 위쪽에 위치하고 크기는 전체 높이의 1/2 이하일 때 열전달이 촉진됨을 알았다.

  • PDF

강제 대류를 이용한 형상기억합금 작동기 (SMA(SHAPE MEMORY ALLOY) ACTUATOR USING FORCED CONVECTION)

  • 전형열;김정훈;박응식
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.48-53
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA actuator along with its capabilities and limitations. Convective heating and cooling using water actuate the SMA(Shape memory alloy) element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater(burner), control unit and a displacement amplification device. The experimental test of the SMA actuator system results in 150 MPa stress(force : 1560 N) with $3\%$ strain and 0.5 Hz. actuation frequency. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

수평원관내 얼음의 접촉융해과정 (Close-contact melting of ice in a horizontal cylinder)

  • 서정세;노승탁
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

Hermite 유동함수법에 의한 정사각형 공동 내부의 자연대류 유동계산 (COMPUTATIONS OF NATURAL CONVECTION FLOW WITHIN A SQUARE CAVITY BY HERMITE STREAM FUNCTION METHOD)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.67-77
    • /
    • 2009
  • This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].

결정 성장에서 Marangoni 대류의 영향 (Marangoni Convection Effects on Crystal Growth)

  • 강승민;최종건;오근호
    • 한국결정성장학회지
    • /
    • 제2권2호
    • /
    • pp.77-82
    • /
    • 1992
  • FZ법에 의한 결정성장에 있어서 용융대는 고액 계면의 장력에 의해 유지되고 상.하부의 고체봉 사이에 위치하고 있다. 따라서, 용융대의 표면에서는 온도와 농도 차이에 의해 표면장력의 구배가 발생하고 있는 marangoni 대류의 구동력으로 작용한다. 본 연구에서 정상상태의 결정성장시는 결정의 가장자리 영역에서의 Solute 농도는 결정내부 보다도 높아지게 되고 전위의 분포도 불규칙하여 지며, void나 기포 침투, Secondary phase의 생성 및 미소균열등의 결함 발생 확률이 계면부근에서 높아지는 결과를 알 수 있었다. 이는 고액성장 계면이 marangoni 대류에 의하여 이 영역에서 온도의 국부적인 변동에 의해 불규칙하여 지게 되기 때문이라 사료된다.

  • PDF

MEMS 기반의 차량용 휨형 유속센서의 제작 및 특성 연구 (Study on the Fabrication and Evaluation of the MEMS Based Curved Beam Air Flowmeter for the Vehicle Applications)

  • 박철민;최대근;이상훈
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.116-123
    • /
    • 2016
  • This paper presents the fabrication and evaluation of the novel drag force type air flowmeter using MEMS technologies for the vehicle applications. To obtain the air drag force, the flowmeter utilized the curved beam structure, which was realized by the difference of residual stress between the silicon oxide layer and the silicon nitride layer. The paddle structure was applied for the maximum air drag force, and the dual-beam was adapted to prevent distortion. The basic experiments were performed in the wind tunnel, and the stable outputs were obtained. The device was applied to the internal combustion engine, and the results were compared with the HI-DS output where the convection thermal flowmeter was used as the reference sensor. The results indicated that the comparable resolutions and response times were obtained under the various engine speeds.

탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구 (A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water)

  • 이중섭;이병호
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어 (Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon)

  • Chang Nyung Kim
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.210-222
    • /
    • 1994
  • 축방향의 균일한 자장이 Czochralski 도가니에 가하여졌을 때의 유동장, 온도장 및 산소의 농도장이 수치적으로 연구되었다.Czochralski 유동장과 농도장에 작용하는 부력, thermocapillarity, 원심력, 자성력, 산소의 확산계수, 산소의 segregation coefficient, SiO형태의 evaporation, 도가니벽의 ablation 등이 고려되었다. 회전방향으로의 대칭성으로부터 자오면에서의 속도성분과 회전방향의 속도성분, 온도, 전류의 흐름 등이 먼저 정상상태에 도달하였다고 가정하고 초기에 일정한 산소의 농도가 주어진 상황에서 비정상 상태의 산소의 농도장이 해석되었다. Czochralski 유동장에서의 대류와 확산에 의한 산소의 전달현상이 파악되었으며 결정성장 표면으로 흡수되는 산소의 농도가 연구되었다.

  • PDF

삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF