• Title/Summary/Keyword: Force Behind

Search Result 184, Processing Time 0.024 seconds

Puritan Values as 'Force Behind' in Mourning Becomes Electra

  • Yang, Seung-Joo
    • English Language & Literature Teaching
    • /
    • v.11 no.4
    • /
    • pp.79-96
    • /
    • 2005
  • Eugene O'Neill portrays Puritan values of the Mannon family inherited from their family past. Since Puritan values of the Mannons suppress the normal way of life and love, they retain only rigidity, without the charity which is the core element of the teaching of Christianity. With Puritan repression and its dissociation from the vital spring of life, the Puritan Mannons live in a world drained of life and in a world of hypocrisy between outer beauty and inner ugliness. Ironically, they think more of death itself, neglecting to feel the vitality of life. Working as a fate, Puritan values of the Mannon as 'Force Behind' in O'Neill's own term are the cause of suffering and destruction of the Mannons throughout the whole play. The mask-like house and faces are effectively used as a dramatic technique to express the distorted Puritan values.

  • PDF

Experimental Investigation of Wave Force on the Pavement behind Crown Wall of Rubble Mound Seawall (경사식 호안 상부구조물 배후 포장체에 작용하는 파력에 대한 실험적 연구)

  • Ko, Haeng Sik;Lee, Jooyeon;Jang, Se-Chul;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Physical experiments were conducted to establish an empirical formula that predicts the wave force on the upside of the pavement behind crown wall of rubble mound seawall due to wave overtopping as well as the uplift force on the downside of the pavement. The experiments were performed by different conditions of the parapet, water depth, relative freeboard, and thickness of the armour layer. Then, the wave force on the upside and downside of the pavement behind the crown wall was analyzed. The parameters that affect the wave overtopping force and the uplift force were identified and empirical formulae were suggested for evaluating the forces on the pavement.

Experimental Investigation of the Hydrodynamic Force Acting on Ship Hull and Rudder in Various Wave Direction

  • Nguyen, Van Minh;Nguyen, Tien Thua;Seo, Juwon;Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.105-114
    • /
    • 2018
  • In the past, traditional methods of research on ship maneuvering performance were estimated in calm waters. However, the course-keeping ability and the maneuvering performance of a ship can be influenced by the presence of waves. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves. In this study, the force acting on a moving ship and a rudder behind the model ship will be performed in regular waves in Changwon National University (CWNU). In addition, the prediction force acting on the rudder in calm waters was carried out and compared with those of Computational Fluid Dynamics (CFD). Model test in regular wave was performed to predict the force acting on the ship and the rudder behind the model ship in various wave directions. The effects of wavelength and wave direction on hydrodynamic forces acting on the ship hull versus rudder angle is discussed.

다방향 규칙파 중 선체, 타, 추진기에 작용하는 유체력 추정을 위한 실험적 연구

  • Seo, Ju-Won;;;;Jeon, Myeong-Jun;Yun, Hyeon-Gyu;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.4-6
    • /
    • 2018
  • Traditional methods of research on ship maneuvering performance were estimated in calm water. Ship maneuverability in waves is of vital importance for navigation safety of a ship (ITTC, 2008). The accurate estimation of force and moment acting on the ship and rudder behind propeller are necessary because the rudder, propeller and hull interaction is of key importance. In addition, course-keeping ability and maneuvering performance of a ship can be significantly affected by the presence of wave. In this study, the model test is performed in the regular wave in the square wave tank in Changwon National University and the hydrodynamic force acting on the ship hull and rudder behind the propeller in various wave directions is investigated. The effect of wavelength and wave direction on hydrodynamic force acting on ship and rudder behind propeller in regular waves is discussed.

  • PDF

A Numerical Model of Large Scale Grid for Two-Dimensional Wake behind Bodies (저항물체 배후의 이차원 후류에 관한 대격자 수치모형)

  • 박일흠;이종섭;이문옥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.83-92
    • /
    • 1998
  • To evaluate the hydraulic resistance behind bodies in a large scale grid numerical model, a drag stress term which is formulated by the drag force is introduced in the depth-integrated Reynolds equations. And also, the applicability and problems of this model are discussed through various numerical experiments where the analytical solutions exist. In the case of a single body, the error range of velocity difference between analytical and numerical solutions is within $\pm$10% and the wake width behind the body shows a good agreement with the analytical solution. When the drag coefficient and the eddy viscosity are precisely decided, the numerical solutions behind a row of bodies will be efficiently used in real situations.

  • PDF

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

3차원 절삭가공에서의 2자유도 채터안정성 해석

  • 김병룡;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.31-35
    • /
    • 2001
  • Three dimensional dynamic cutting can be postulated as an equivalent orthogonal dynamic cutting through the plane containing both the cutting vector and the chip flow velocity vector in cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static three dimensional cutting experiments. Particular attention is paid to the energy supplied to the vibration of the tool behind the vertical vibration and the direction. The phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angel of the fluctuating cutting force must be regarded in point of stability limits. Chatter vibration can effectively be suppressed by enlarging the dynamic rigidity of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theory and the critical width of cut determined by experiments.

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 실험적 연구)

  • Im, Hui-Chang;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.260-268
    • /
    • 2001
  • Wake structures behind two circular cylinders with different groove configurations(U and V-shape) have been investigated experimentally. The results were compared with those for the smooth cylinder having the same diameter D. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number in the range of Re(sub)D=8,000∼14,000. As a result, the U-shaped groove was found to reduce the drag up to 18.6%, but the V-shaped groove reduced drag force only 2.5% compared with the smooth cylinder. As the Reynolds number increases, the vortex shedding frequency becomes a little larger than that of the smooth cylinder. The visualized flow using the smoke-wire and particle tracing methods shows the flow structure qualitatively.

Numerical Analysis of the Flow Field around Artificial Reefs (인공어초 주변의 흐름장에 관한 수치해석)

  • Jeong, Chil-Hoon;Kim, Heon-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • This study investigated the fluid force acting on an artificial reef and the scour pattern at the bottom of the artificial reef in a steady-flow field using the finite difference method (Flow-3D). The structure was tetragonal in shape, like similar objects found in nature. The numerical analysis showed that the hydrodynamic characteristics and incipient scouring pattern matched natural phenomena. The velocity distribution around the tetragon was symmetric and wake occurred inside the tetragon and behind the bottom of the tetragon. The length of the recirculation flow behind the tetragon for each velocity was about 4-5 cm and the magnitude of the recirculation flow inside the tetragon generally increased with the Reynolds' number, although it decreased slightly for Reynolds' numbers from 11,000 to 12,000. In addition, the total fluid force acting on the tetragon increased with the inflow velocity, although the increment was smaller when the velocity exceed 18 cm/sec. The incipient pattern for the scouring of sediment matched the natural phenomenon.

The effect of labial inclination on intrusion of the upper and lower incisors by three-dimensional finite element analysis (분절호선법으로 상하악 절치부 압하 시 순측경사도가 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Kim, Dong Woo;Yang, Hoon Chul;Kim, Gi Tae;Kim, Sung Sik;Son, Woo Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.4 s.99
    • /
    • pp.259-277
    • /
    • 2003
  • This study was designed to investigate the position of anteroposterior center of resistance for genuine intrusion and the mode of change of the minimum distal force for simultanous intrusion and retraction of the upper and lower incisors according to the increase of labial inclination. For this purpose, we used the three-piece intrusion arch appliance and three-dimensional finite element models of upper and lower incisors. 1. Positions of the center of resistance in upper incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 6m behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 9mm behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 12m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 16m behind the distal surface of the lateral incisor bracket. 2. Positions of the center of resistance in lower incisors according to the increase of the labial inclination were as follows; 1) In normal inclination situation, the center of resistance was located in 10mm behind the distal surface of the lateral incisor bracket. 2) In $10^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 13m behind the distal surface of the lateral incisor bracket. 3) In $20^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 15m behind the distal surface of the lateral incisor bracket. 4) In $30^{\circ}$ increase of the labial inclination situation, the center of resistance was located in 18m behind the distal surface of the lateral incisor bracket. 3. The patterns of stress distribution were as follows; 1) There were even compressive stresses In and periodontal ligament when intrusion force was applied through determined center of resistance. 2) There were gradual increase of complexity in compressive stress distribution pattern with Increase of the labial inclination when intrusion and retraction force were applied simultaneously. 4. With increase of the labial inclination of the upper and lower incisors, the position of the center of resistance moved posteriorly. And the distal force for pure intrusion was increased until $20^{\circ}$increase of the labial inclination.