• Title/Summary/Keyword: Force Balance

Search Result 597, Processing Time 0.233 seconds

Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with subacute hemiparetic stroke

  • Son, Dong-Wook;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권3호
    • /
    • pp.106-112
    • /
    • 2017
  • Objective: Robot assisted gait training is implemented as part of therapy for the recovery of gait patterns in recent clinical fields, and the scope of implications are continuously increasing. However clear therapy protocols of robot assisted gait training are insufficent. The purpose of this study was to investigate the effects of robot-assisted gait training applied with guidance force on balance and gait performance in persons with hemiparetic stroke. Design: Two group pre-test post-test design. Methods: Nineteen persons were diagnosed with hemiparesis following stroke participated in this study. The participants were randomly assigned to the unilateral guidance group or bilateral guidance group to conduct robot-assisted gait training. All participants underwent robot-assisted gait training for twelve sessions (30 min/d, 3 d/wk for 4 weeks). They were assessed with gait parameters (gait velocity, cadence, step length, stance phase, and swing phase) using Optogait. This study also measured the dynamic gait index (DGI), the Berg balance scale (BBS) score, and timed up and go (TUG). Results: After training, BBS scores were was significantly increased in the bilateral training group than in the unilateral guidance group (p<0.05). Spatiotemporal parameters were significantly changed in the bilateral training group (gait speed, swing phase ratio, and stance phase ratio) compared to the unilateral training group (p<0.05). Conclusions: The results of this study suggest that robot-assisted gait training show feasibility in facilitating improvements in balance and gait performance for subacute hemiparetic stroke patients.

힘-변위 모델을 이용한 펄스 GMAW의 해석 (Analysis of Pulsed GMAW Using Force-Displacement Model)

  • ;이재학;유중돈
    • Journal of Welding and Joining
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2009
  • In order to determine the One-Drop One-Pulse(ODOP) condition of the pulsed gas metal arc(GMA) welding, the drop detaching phenomenon during the peak time is investigated using the force-displacement model. The drop detaching criterion is established based on the displacement of the pendant drop, and the forces exerted on the drop are calculated using the Modified Force Balance Model(MFBM). The effects of wire melting on the drop size and force are included in the force-displacement model. While the peak current has most significant effects on the drop detaching time, the initial drop mass prior to the peak time also influences drop transfer. The calculated results show good agreements with the experimental data, which implies that the ODOP condition can be predicted using the force-displacement method.

Development of an Advanced Early Rehabilitation Training System for Postural Control Using a Tilting Bed

  • Yu, Chang-Ho;Kim, Kyung;Kim, Yong-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2440-2443
    • /
    • 2005
  • We propose a new early rehabilitation training system for postural control using a tilting bed and a force plate. The conventional rehabilitation systems for postural control cannot be applied to the patients lying in bed because the rehabilitation training using those systems is possible only when the patient can stand up by himself or herself. Moreover, there has not existed any device that could provide the sense of balance or the sensation of walking to the patients in bed. By using a tilting bed, a visual display, and a force plate, we have developed a new rehabilitation training system for balance control of the patients in bed providing sense of balance and the sensation of walking to the patient. Through the experiments with real people, we verified the effectiveness of the new early rehabilitation training system. The results showed that this system is an effective system for the early rehabilitation training and that our system might be useful as clinical equipment.

  • PDF

전후방향의 플랫폼 이동에 대한 동적균형 회복 특성 (Characteristics of Dynamic Postural Control in Anteroposterior Perturbation of a Platform)

  • 태기식;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1066-1069
    • /
    • 2002
  • Dynamic postural control varies with the environmental context, specific task and intentions of the subject. In this paper, dynamic postural control against forward-backward perturbations of a platform was estimated using tri-axial accelerometers and a force plate. Ten young healthy volunteers stood upright in comfortable condition on the perturbation system which was controlled by an AC servo motor. With anterior-posterior perturbations, movements of ankle, knee and hip Joints were obtained by tri-axial accelerometers. and ground reaction forces with corresponding displacements of the center of pressure(CoP) by the force plate. The result showed that the ankle moved first and the trunk forward, which implies that the mechanism of the dynamic postural control in forward-backward perturbations, occurred in the procedure of the ankle, the knee and the hip. Knee flexion and hip extension in the period of acceleration, constant velocity and deceleration phase is very important fur the balance recovery. These responses depends on the magnitude and timing of the perturbation. From the present study the accelerometry-system appears to be a promising tool for understanding kinematic accelerative In response to a transient platform perturbation. A more through understanding of balance recovery mechanism may aid in designing methods for reducing falls and the resulting injuries.

  • PDF

The past, present and future of high-frequency balance testing

  • Boggs, Daryl W.
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.323-345
    • /
    • 2014
  • Less than 30 years ago a new method was introduced in wind-tunnel testing of tall buildings, known variously as the High-Frequency Base Balance or High-Frequency Force Balance, which revolutionized the determination of design wind loads using model studies. The method is reviewed in hindsight, in the perspective of the present, and with a crystal ball to speculate on future developments. These viewpoints focus on various technical issues that have been solved, are being solved, and need to be solved. The intent is to assist the uninitiated develop appreciation for the technology involved, to identify various pitfalls awaiting those who embark in the method, and to identify areas of need so that practicing design engineers-the users of such studies-can appreciate the limitations and collaborate on future advances while promoting improved communication between executor and user.

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • 제11권3호
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

차체용 드로우 다이의 블랭크 홀더 굽힘 변형 해석 (Analysis on the Bending Deflection of the Blank Holder in Automotive Body Panel Draw Die)

  • 인정제;신용승;김헌영
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.68-74
    • /
    • 2001
  • In the drawing of large size automotive panels, elastic deflection of die components is induced by the contact force between them. The deflection is nonuniform and locally distributed, and results in nonuniform material flow. In order to arrange such a nonuniform die gap, a correcting operation, so called die spotting, is inevitable, which requires trial and error works and consuming time. A prediction of the bending deflection prior to a try-out must be useful to reduce the die spotting time. In this study, drawing process of a front fender is simulated first. and the deflection of the blank holder is calculated from the contact force imposing on th blank holder. The balance block heights ensuring a uniform deflection are optimized by the analysis and design of experiments.

  • PDF

유압 액셜 피스톤 펌프에서 실린더 블록과 구면 밸브 플레이트 사이의 마찰 특성 (Friction Characteristics between the Cylinder Block and the Spherical Valve Plate in Hydraulic Axial Piston Pump)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.23-28
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, it is need to know the various characteristics in the sliding contact parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump in experimentally. Results are arranged as follow; (1) friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio in valve plate. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

액셜 피스톤 펌프에서 실린더 블록과 밸브 플레이트 사이의 마찰 특성 (Friction characteristics between the cylinder block and the valve plate in axial piston pump)

  • 김종기;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.249-255
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, we have to know the various characteristics in the sliding parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump by using of modeling experiment. The main results of this study are these; (1) Friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

  • PDF