• Title/Summary/Keyword: Force/Torque sensor

Search Result 132, Processing Time 0.026 seconds

Force and Pose control for Anthropomorphic Robotic Hand with Redundancy (여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어)

  • Yee, Gun Kyu;Kim, Yong Bum;Kim, Anna;Kang, Gitae;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

Screw Motion and Control of Conductive Rod by Rotating a Spiral Electrodynamic Wheel (동전기 휠을 이용한 전도성 환봉의 나선형 운동과 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.882-887
    • /
    • 2011
  • A spiral electrodynamic wheel is proposed as an actuator for the contactless conveyance of a conductive rod. When rotating the wheel around the rod, a radial force, a tangential force, and an axial force are generated on the rod and cause a screw motion of the rod. The rotation of the rod is the inevitable result due to traction torque of the wheel and the unintended motion to be excluded. However, the rotating speed of the rod should be measured without mechanical contact to be cancelled out through the controller, so the electrodynamic wheel is used as a sensor measuring the rotating speed of the rod indirectly as well as an actuator. In this paper, we model the magnetic forces by the proposed wheel theoretically and compare the derived model with simulation result by Maxwell, and analyze influences on the magnetic forces by key parameters constituting the wheel. The feasibility of the conveyance system is verified experimentally.

Coordination of Two Manipulators Using Force Torque Sensor (Painting on the Three-Dimensional Surface)

  • Nakajima, Haruo;Ishida, Hirofumi;Ishimatsu, Takakazu;Kasagami, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.597-600
    • /
    • 1994
  • A Robot system to realize a painting using a writing brush is explained here. Based on the three-dimensional data about the target china, the movements of the writing brush is determined. The movement is realized by the movement of two robot manipulators which move coordinatedly. Experimental results reveals the applicability of one system.

  • PDF

Magnetic Sensors and Actuators

  • Pasquale, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.60-69
    • /
    • 2003
  • A review of mechanical sensing techniques based on magnetic methods is presented, with special reference to magnetoelastic strain gauges and force sensors. A novel strain sensor based on soft amorphous ribbons is described. Other types of magnetic sensors, for the measurement of torque and displacement are briefly discussed. An overview of magnetic actuators based on giant magnetostrictive materials, with some practical examples, is presented. Recent advances in the development and application of magnetic shape memory materials are discussed, together with the analysis of recent studies for the description of magnetic shape memory phenomena.

Equivalent Physical Damping Parameter Estimation for Stable Haptic Interaction (안정적인 햅틱 상호작용을 위한 등가 물리적 댐핑 추정)

  • Kim, Jong-Phil;Seo, Chang-Hhoon;Ryu, Je-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • This paper presents offline estimation of equivalent physical damping parameter in haptic interaction systems where damping is the most important parameter for stability. Based on the previous energy bounding algorithm, an offline procedure is developed in order to estimate the physical damping parameter of a haptic device by measuring energy flow-in to the haptic device. The proposed method does not use force/torque sensor at the handgrip. Numerical simulation and experiments verified effectiveness of the proposed method.

  • PDF

A Study for the Improvement of Weld Quality Through Force Control of Servo Gun in Resistance Spot Welding using Robot (저항 점 용접 로봇에서 서보건의 가압력 제어를 통한 용접 강도 향상에 대한 연구)

  • Park, Young-Whan;Lee, Jong-Gu;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.13-20
    • /
    • 2006
  • Resistance spot welding is widely used for joining sheet metals in the automotive manufacturing process. Recently, servo-gun is used to increase the productivity and precise control the acting force. However, force control mechanisms have not been investigated with servo-guns until now. In this paper, it is proved that servo-motor current is proportional to torque and by experiment, experimental equation between servo-motor current and electrode force was derived. Algorithm for feedback control of electrode force was suggested using current measurement. In addition, applying soft touch method to this system the impact between electrode and specimen, which is the problem of air gun, could be reduced. Indentation made the force decrease in holding time of resistance spot welding. In order to overcome this problem, force compensation using the servo gun was used and it improved weld strength in good welding current range.

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

Evaluation of Performance Index of Dual-arm manipulator for Multiple Shape Object Handling (Multiple Shape Object Handling을 위한 양팔로봇의 성능지수 평가)

  • Son, Joon-Bae;Chen, Hu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • This paper proposes a performance index for the multiple shape object handling of dual arm manipulator to determine whether a robot is good or not. When the dual-arm manipulator grasps a fixed object and is posed, the dual-arm manipulator should procure a space to freely control the manipulator. As a performance evaluation parameter, each joint torque from current sensor signal is utilized. From the current information, torque and energy for each joint are estimated. In this paper an performance index for an unstructured object is defined by an energy-cost function, and stability analysis for each motion is derived by the maximum force to the object. The maximum force to the object is computed by the inertia of object and acceleration information of end-effector. The acceleration data are derived by the double derivation of each encoder signal. Manipulability measure which implies how efficiently the dual-arm manipulator can move with the grasped object, can be represented by the intersection of the two manipulability ellipsoids for the left and right arms. Effectiveness of the proposed algorithm has been verified through the practical simulations and real experiments.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.