• Title/Summary/Keyword: Food waste water

Search Result 315, Processing Time 0.027 seconds

Development of Food Waste Fermentation System by Low Water-Ratio Salt Minimization (절수 염분제거에 의한 음식물류 폐기물 퇴비화 시스템 개발)

  • Han, Doo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.189-194
    • /
    • 2005
  • The food wastes recycling system should be constructed before 2005 in the city area. In order to manufacture the good compost, salt remaining rate should be minimized. We studied the effective method of minimizing salt ratio by diluting with low water ratio. We got the salt remaining ratio less than 0.3% by effective fragmentation method, and we applied the IR heating in order to make good compost.

  • PDF

Utilization of PTE and LDPE Plastic Waste and Building Material Waste as Bricks

  • Intan, Syarifah Keumala;Santosa, Sandra
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.603-608
    • /
    • 2019
  • Plastic waste is becoming a problem in various countries because of the difficulty of natural decomposition. One type is PET plastic(Polyethylene Terephthalate), which is often used as a bottle for soft drink packaging, and LDPE(Low Density Polyethylene), which is also widely used as a food or beverage packaging material. The use of these two types of plastic continuously, without good recycling, will have a negative impact on the environment. Building material waste is also becoming a serious environmental problem. This study aims to provide a solution to the problem of the above plastic waste and building material waste by making them into a mixture to be used as bricks. Research is carried out by mixing both materials, namely plastic heated at a temperature of $180-220^{\circ}C$ and building material waste that had been crushed and sized to 30-40 mesh with homogeneous stirring. The ratios of PET and LDPE plastic to building material waste are 9 : 1, 8 : 2, 7 : 3, 6 : 4 and 5 : 5. After heating and printing, density, water absorption and compressive strength tests are carried out. Addition of PET and LDPE plastic can increase compressive strength, and reduce water absorption, porosity and density. A maximum compressive strength of 10.5 MPa is obtained at the ratio of 6 : 4.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

A study on the introduction of organic waste-to-energy incentive system(II): material and energy balance of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(II): 바이오가스화 물질·에너지수지)

  • Moon, Hee-Sung;Kwon, Jun-Hwa;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.77-86
    • /
    • 2021
  • In this study, to use as basic data for the organic waste resource energy incentive system, the energy efficiency is evaluated through the mass balance and energy balance calculation results of the anaerobic digester where food waste, food waste leachate and various organic wastes are treated. As a result of the mass balance analysis for 11 biogasification facilities, it was confirmed that 21.1% of process water and 25.7% of tap water were input in large amounts, excluding organic waste. Accordingly, it accounted for 87.6% of the total effluent of linked treated water. In addition, considering that 15.7% of the total input volume is converted to biogas and the average total solids (TS) is 22%, an average material conversion rate of 75% was confirmed. As a result of the energy balance analysis, the energy conversion rate was confirmed to be 78.5% on average by analyzing the biogas calorific value compared to the potential energy of the influent. The average biogas production efficiency including external energy sources for biogas production was 69.4%, and the biogas plant efficiency to which unused effluent energy was applied was 58.9% on average.

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

A circular economical application of eggshell waste as a bio-filler in the fabrication of gum Arabic composite film

  • Blessing A. Oredokun-Lache;Esther B. Ibrahim;Adekemi G. Oluwafemi;Georgina O. Erifeta;Sunday J. Josiah;Olarewaju M. Oluba
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.394-407
    • /
    • 2024
  • The poultry industry faces disposal difficulty in waste, but recent advancements in material science and sustainability have enabled the innovative transformation of waste into valuable resources. In this study, eggshell (EC) was added as a bio-filler to gum Arabic (GA) to fabricate a GA-EC bio-composite film. Bio-composites containing 0.5 g (GA-EC0.5) and 1.0 g (GA-EC1.0) EC dispersed in 30 mL of 15% GA solution were fabricated and characterized using standard analytical techniques. The GA-EC0.5 composites showed significantly higher moisture content, transparency, water solubility, and water vapor permeability but lower tensile strength and thermal stability than GA-EC1.0. Following a post-harvest wrapping of tomato fruits with the GA-EC composite films and storage at 25±2℃ for 20 days, significant (p>0.05) reductions in weight loss, pH, lycopene content, and activities of polyphenol oxidase and pectin methylesterase compared to unwrapped fruits were recorded. Adding EC to GA has enabled the fabrication of composite films with improved mechanical, barrier, and thermal properties with potential application in the post-harvest storage of tomato fruits.

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization (열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구)

  • Choi, Jung Su;Kim, Hyun Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Starter culture production of Rhodospirillum rubrum P17 for use in treatment of organic waste water (유기폐수처리를 위한 Rhodospirillum rubrum P17의 종균생산)

  • Cho, Kyung-Dug;Kang, Seong-Og;Lim, Wang-Jin;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.488-494
    • /
    • 1993
  • A photosynthetic bacterium strain P17 having high growth rate and assimilating ability of organic acids was isolated from several soil samples, which was identified as Rhodospirillum rubrum. Cultural conditions of the strain P17 were examined for the production of starter culture used in the treatment of organic waste water. The addition of organic acids mixture as carbon source containing 0.2% Na-acetate, 0.1% Na-propionate and 0.2% Na-lactate and 0.1% of yeast extract as growth factor stimulated the cell growth. The maximal cell production was obtained at $30^{\circ}C$, pH 7.0, 2,500 lux of illumination and $50{\sim}100\;rpm$ of agitation. Under the optimal conditions of batch and fed-batch culture systems in a Jar fermentor, 5.17 g/l and 7.93 g/l of cells were obtained after S days of cultivation, respectively. In continuous culture system, the cell productivity was 0.206 g/l/h at a dilution rate of 0.21 $h^{-1}$. When R. rubrum P17 was cultivated in a soybean curd waste water, initial COD level(3,240 mg/l) of the waste water was reduced to 250 mg/l after 4 days of cultivation.

  • PDF

An Investigation Study on Fact of Waste Heat of Domestic Industry (국내 산업폐열 현황에 대한 조사연구)

  • 박일환;박준태;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.811-816
    • /
    • 2002
  • Waste heat exhausted from seven types of the domestic industry was surveyed, which include food, fibre, paper & wood, chemical, ceramics, metalworking and others. The databases of waste heat for each industry were made by using ACCESS software of Microsoft, and data were analyzed to get correlation between waste heat and purchase energy. The volume of usable waste heat is estimated to be 9,169,000 TOE in the year of 2000, when the minimum available temperature is set as $100^{\circ}C$ for waste gas, $30^{\circ}C$ for hot water and $100^{\circ}C$ for steam considering the condition of waste heat exhausting facilities and surroundings. This volume of waste heat is approximately 11.9 percent of the purchase energy of the domestic industry.