Fourier transform-near infrared (FT-NIR) spectroscopy is a simple, rapid, non-destructive technique which can be used to make quantitative analysis of chemical composition in grain. An interest in total dietary fiber (TDF) of grain such as rice has been increased due to its beneficial effects for health. Since measuring methods for TDF content were highly depending on experimental technique and time consumptions, the application of FT-NIR spectroscopy to determine TDF content in milled rice. Results of enzymatic-gravimetric method were $1.17-1.92\%$ Partial least square (PLS) regression on raw NIR spectra to predict TDF content was developed Accuracy of prediction model for TDF content was certified for regression coefficient (r), standard error of estimation (SEE) and standard error of prediction (SEP). The r, SEE and SEP were 0.9705, 0.0464, and 0.0604, respectively. The results indicated that FT-NIR techniques could be very useful in the food industry and rice processing complex for determination of TDF in milled rice on real time analysis.
Kim, Eun-Kyung;Yeon, Seo-Eun;Lee, Sun-Hee;Choe, Jeong-Sook
Nutrition Research and Practice
/
v.9
no.1
/
pp.71-78
/
2015
BACKGROUND/OBJECTIVES: The purposes of this study were to compare total energy expenditure (including PAL and RMR) of Korean farmers between the farming season and off farming season and to assess the accuracy of estimated energy requirement (EER) prediction equation reported in KDRIs. SUBJECTS/METHODS: Subjects were 72 Korean farmers (males 23, females 49) aged 30-64 years. Total energy expenditure was calculated by multiplying measured RMR by PAL. EER was calculated by using the prediction equation suggested in KDRIs 2010. RESULTS: The physical activity level (PAL) was significantly higher (P < 0.05) in the farming season (male $1.77{\pm}0.22$, female $1.69{\pm}0.24$) than the off farming season (male $1.53{\pm}0.32$, female $1.52{\pm}0.19$). But resting metabolic rate was significantly higher (P < 0.05) in the off farming season (male $1,890{\pm}233kcal/day$, female $1,446{\pm}140kcal/day$) compared to the farming season (male $1,727{\pm}163kcal/day$, female $1,356{\pm}164kcal/day$). TEE ($2,304{\pm}497kcal/day$) of females was significantly higher in the farming season than that ($2,183{\pm}389kcal/day$) of the off farming season, but in males, there was no significant difference between two seasons in TEE. On the other hand, EER of male and female ($2,825{\pm}354kcal/day$ and $2,115{\pm}293kcal/day$) of the farming season was significantly higher (P < 0.05) than those ($2,562{\pm}339kcal/day$ and $1,994{\pm}224kcal/day$) of the off farming season. CONCLUSIONS: This study indicates that there is a significant difference in PAL and TEE of farmers between farming and off farming seasons. And EER prediction equation proposed by KDRI 2010 underestimated TEE, thus EER prediction equation for farmers should be reviewed.
The Journal of the Convergence on Culture Technology
/
v.8
no.4
/
pp.347-353
/
2022
In the restaurant industry, start-ups are active due to high demand from consumers and low entry barriers. However, the restaurant industry has a high closure rate, and in the case of franchises, there is a large deviation in sales within the same brand. Thus, research is needed to prevent the closure of food franchises. Therefore, this study examines the factors affecting franchise sales and uses machine learning techniques to predict the success and failure of franchises. Various factors that affect franchise sales are extracted by using Point of Sale (PoS) data of food franchise and public data in Gangnam-gu, Seoul. And for more valid variable selection, multicollinearity is removed by using Variance Inflation Factor (VIF). Finally, classification models are used to predict the success and failure of food franchise stores. Through this method, we propose success and failure prediction model for food franchise stores with the accuracy of 0.92.
To develop the prediction program for quality change of Citrus unshiu during marketing, we examined the quality characteristics of Citrus unshiu stored at experimental refrigerator set to 4, 8, 12 and 16$^{\circ}C$ for 2 months. According to the storage temperature the changes of quality characteristics were different respectively, but it was most severe during 16$^{\circ}C$ storage. Activation energy and Q10 value were 6683.16 cal/mol K and 1.53 respectively. The determination coefficient of regression equation of pH, acidity and vitamin C by surface response analysis were over 0.85. Using these regression equation, we developed the prediction program for the change of pH, acidity and vitamin C contents. The calculated values and experimental values of pH, acidity and vitamin C contents for short-term storage of Citrus unshiu were coincided well.
The problems associated with gene identification and the prediction of gene structure in DNA sequences have been the focus of increased attention over the past few years with the recent acquisition by large-scale sequencing projects of an immense amount of genome data. A variety of prediction programs have been developed in order to address these problems. This paper presents a review of the computational approaches and gene-finders used commonly for gene prediction in eukaryotic genomes. Two approaches, in general, have been adopted for this purpose: similarity-based and ab initio techniques. The information gleaned from these methods is then combined via a variety of algorithms, including Dynamic Programming (DP) or the Hidden Markov Model (HMM), and then used for gene prediction from the genomic sequences.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.207-209
/
2022
In the IoT environment, it is possible to collect life pattern data by recognizing human physical activity from smart devices. In this paper, the proposed model consists of a prediction stage and a recommendation stage. The prediction stage predicts the scale of anxiety and depression by using logistic regression and k-nearest neighbor algorithm through machine learning on the dataset collected from life pattern data. In the recommendation step, if the symptoms of anxiety and depression are classified, the principal component analysis algorithm is applied to recommend food and light exercise that can improve them. It is expected that the proposed anxiety/depression prediction and food/exercise recommendations will have a ripple effect on improving the quality of life of individuals.
BACKGROUND/OBJECTIVES: The purpose of this study was to assess the accuracy of a dietary reference intake (DRI) predictive equation for estimated energy requirements (EER) in female college tennis athletes and non-athlete students using doubly labeled water (DLW) as a reference method. MATERIALS/METHODS: Fifteen female college students, including eight tennis athletes and seven non-athlete subjects (aged between 19 to 24 years), were involved in the study. Subjects' total energy expenditure (TEE) was measured by the DLW method, and EER were calculated using the DRI predictive equation. The accuracy of this equation was assessed by comparing the EER calculated using the DRI predictive equation ($EER_{DRI}$) and TEE measured by the DLW method ($TEE_{DLW}$) based on calculation of percentage difference mean and percentage of accurate prediction. The agreement between the two methods was assessed by the Bland-Altman method. RESULTS: The percentage difference mean between the methods was -1.1% in athletes and 1.8% in non-athlete subjects, whereas the percentage of accurate prediction was 37.5% and 85.7%, respectively. In the case of athletic subjects, the DRI predictive equation showed a clear bias negatively proportional to the subjects' TEE. CONCLUSIONS: The results from this study suggest that the DRI predictive equation could be used to obtain EER in non-athlete female college students at a group level. However, this equation would be difficult to use in the case of athletes at the group and individual levels. The development of a new and more appropriate equation for the prediction of energy expenditure in athletes is proposed.
Thermal diffusivities of white muscled fish meat paste products were measured and an experimental equation for prediction of the thermal diffusivity was suggested. The thermal diffusivities of products with water contents of 43.03 to $82.49\%$ and lipid contents of 0.50 to $14.88\%$ could be deduced as following equations ; $$\alpha_{80.39^{\circ}C}=0.0832{\cdot}10^{-6}{\cdot}X_w+0.0797{\cdot}10^{-6},\;m^2{\cdot}s^{-1}$$$$\alpha_{100.63^{\circ}C}=0.0873{\cdot}10^{-6}{\cdot}X_w+0.0830{\cdot}10^{-6},\;m^2{\cdot}s^{-1}$$$$\alpha_{120.09^{\circ}C}=0.0842{\cdot}10^{-6}{\cdot}X_w+0.0901{\cdot}10^{-6},\;m^2{\cdot}s^{-1}$$ From these equations, an experimental equation was derived for the prediction of thermal diffusivities of white muscled fish meat paste products ; $$\alpha=(1.308+0.1324{\cdot}X_w){\cdot}\alpha_w-0.0626{\cdot}10^{-6}{\cdot}X_w-0.1355{\cdot}10^{-6},\;m^2{\cdot}s^{-1}$$ The errors of the thermal diffusivities predicted with this equation were less than ${\pm}\;0.30\%$ compared with those measured.
Absorption characteristics of hot air-. vacuum-, and freeze-dried ginger powder were investigated. Monolayer moisture content as determined by GAB equation was $0.257{\sim}0.540\;H_2O/g$, showing higher significance than BET equation. Absorption enthalpy was calculated based on different drying methods and water activities. Absorption energy decreased with increasing water activity but was not affected by drying method. Isotherm curves showed a typical sigmoid form. Among models applied for predicting equilibrium moisture content, Caurie model was the best fit model for ginger powder, showing the lowest prediction deviation of $1.2{\sim}5.4%$, followed by Henderson then Bradley models. The prediction model equations for the moisture content were established by in(time), water activity, and temperature.
The physical properties which must be considered as engineering factors affecting on the evaporation process of fruit juices are boiling point rise, density, viscosity, thermal conductivity and specific heat. These factors are varied with food ingredients, soluble solids, pressure and temperature. In the reserch, it has been worked to obtain the data and to develop prediction model for the boiling point rise as a faction of soluble solid and pressure by the regression of SPSS package program. For the prediction model of density, it was developed as a fuction of soluble solid content on apple and pear juices. For the viscosity model, it was establised by the factors of temperature and content of soluble solid through the optimization program.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.