• Title/Summary/Keyword: Food expression

Search Result 2,862, Processing Time 0.037 seconds

Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice (HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과)

  • Young Ik Lee;Hui Jin Lee;Su Jin Pyo;Yong Hyun Park;Myng Min Lee;Ho-Yong Sohn;Jin Sook Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC) is a traditional Asian medicinal plant belonging to the Rosaceae family. The fruits of RC are known to prevent adult diseases through antioxidants. In this study, the effects of RC extract (RCex) on obesity and nonalcoholic fatty liver disease (NAFLD) were evaluated in animal models. Twenty-eight male C57BL/6J mice were induced to become obese for 8 weeks and then the extract was orally administered for 8 weeks. RCex reduced body weight, adipose tissue, liver weight. RCex improved biochemical biomarkers including lipid metabolism (alanine aminotransferase (ALT), aspartate aminotransferase (AST), plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol). The activation of AMP-activated protein kinase (AMPK) reduced the expression of adipogenesis genes (liver × receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthesis (FAS), acetyl-CoA carboxylase 1 (ACC1) and the effect of enhancing carnitine palmitoyltransferase (CPT) activity by RCex was verified. RCex also influence on plasma production of hormones (adiponectin & leptin) related on energy expenditure and metabolism. In addition, we confirmed that RCex improved glucose intolerance in HFD-induced obese rats. RCex was first demonstrated to have anti-obesity as well as anti-NAFLD effects by regulating fatty acid oxidation and fatty acid synthesis by phosphorylation of AMPK. This suggests that RCex could be a good supplement for the prevention of obesity and related NAFLD.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

A Study of the Predictive Effectiveness of Stem and Root Extracts of Cannabis sativa L. Through Network Pharmacological Analysis (네트워크 분석기반을 통한 대마 줄기 및 뿌리 추출물의 약리효능 예측연구)

  • Myung-Ja Shin;Min-Ho Cha
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.179-190
    • /
    • 2024
  • Cannabis sativa is a plant widely cultivated worldwide and has been used as a material for food, medicine, building materials and cosmetics. In this study, we assessed the functional effects of C. sativa stem and root extracts using network pharmacology and confirmed their novel functions. The components in stem and root ethanol extracts were identified by gas chromatography-mass spectrometry analysis, and networks between the components and proteins were constructed using the STICHI database. Functional annotation of the proteins was performed using the KEGG pathway. The effects of the extracts were confirmed in lysophosphatidylcholine-induced THP-1 cells using real-time PCR. A total of 21 and 32 components were identified in stem and root extracts, respectively, and 147 and 184 proteins were linked to stem and root components, respectively. KEGG pathway analysis showed that 69 pathways, including the MAPK signaling pathway, were commonly affected by the extracts. Further investigation using pathway networks revealed that terpenoid backbone biosynthesis was likely affected by the extracts, and the expression of the MVK and MVD genes, key proteins in terpenoid backbone biosynthesis, was decreased in LPC-induced THP-1 cells. Therefore, this study determined the diverse function of C. sativa extracts, providing information for predicting and researching the effects of C. sativa.

OLIGONOL PREVENTED THE RELAPSE OF DEXTRAN SULFATE SODIUM-ULCERATIVE COLITIS THROUGH ENHANCING NRF2-MEDIATED ANTIOXIDATIVE DEFENSE MECHANISM

  • K.-J. KIM;J.-M. PARK;J.-S. LEE;Y.S. KIM;N. KANGWAN;Y.-M. HAN;E.A. KANG;J.M. AN;Y.K. PARK;K.-B. HAHM
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.69 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Repeated bouts of ulcerative colitis featured troublesome course of inflammatory bowel disease leading to fatal colitis-associated cancer, which is strongly associated with oxidative stress and sustained inflammation. Since oligonol, low molecular weighted polyphenol extracted from fruit lychee, showed antioxidative and anti-inflammatory actions, we hypothesized that oligonolcan prevent relapse of colitis. We compared oligonol with current gold standard therapeutics, sulfasalazine in preventive efficacy of relapse. First, dextran sulfate sodium (DSS)-induced colitis were made following pretreatment with oligonol, 10, 50, and 100 mg/kg for 7 days to measure therapeutic effect of oligonol and relapse model via repeated DSS administration was made following with either 50 mg/kg oligonol or 30 mg/kg sulfasalazine to explore relapse preventing action of oligonol in C57BL/6 mice. Detailed changes in colon were measured to explain molecular mechanisms. Pretreatment of 10, 50, 100 mg/kg oligonol (p.o.), significantly reduced DSS-induced colitis; total pathologic scores, colon length, and clinical symptom scores (P < 0.05). Oligonol pretreatment significantly decreased the levels of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α) as well as nuclear factor-κB (NF-κB), c-Fos, and c-Jun in affected colon tissues, but the expression of heme oxygenase-1 (HO-1) and NADH: quinone oxidoreductase-1(NQO-1) as well as total antioxidant concentration (P < 0.005) was significantly increased with oligonol. A relapse model established with repeated DSS administration led to high mortality. However, oligonol significantly ameliorated exacerbations of colitis, while sulfasalazine did not (P < 0.01). Significantly decreased expressions of cyclooxygenase-2 (COX-2), TNF-α, and macrophages inhibition were relapse preventing actions of oligonal, but significant action of oligonol relevant to relapse prevention was either significantly increased expressions of NQO-1 or significantly preserved mucin (P < 0.05). Concerted anti-inflammatory, antioxidative, and host defense enhancing actions of oligonol can be applied during maintenance therapy of IBD to prevent relapse of IBD.

Effects of Polysaccharide (Polycan) derived from Black Yeast in TNF-α-induced Inflammation in the Intestinal Epithelial Cells and Loperamide-induced Constipation Models (흑효모 유래 Polycan의 TNF-α 유도 장 상피세포 염증 및 Loperamide 유도 변비 모델에 미치는 효과)

  • Young Suk Kim;Bon Hwa Ku;Min Jeong Cho;Jung Hee Kwon;Seon Min Lee;Tae Woo Oh
    • Herbal Formula Science
    • /
    • v.32 no.3
    • /
    • pp.297-310
    • /
    • 2024
  • Objective : This study was conducted to investigate the anti-inflammatory and laxative effects of Polycan in TNF-α-treated HT-29 intestinal epithelial cells and loperamide-induced constipation in vivo models, respectively. Methods : To evaluate the anti-inflammatory effects of Polycan, HT-29 cells were treated with TNF-α in the presence or absence of Polycan. IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). MAPK phosphorylation, nuclear translocation of NF-κB, and phosphorylation of IκB were assessed by Western blot analysis. To investigate the laxative effects of Polycan, 6-week-old SD rats (8 female rats per group) were orally administered Polycan or Chicory Fiber as a positive control for 4 weeks, and constipation was induced with loperamide treatment for 10 days before sacrifice. One day before sacrifice, a charcoal meal was administered to evaluate intestinal transit times. The periodically collected feces were used to assess the number of fecal pellets and fecal water content. Results : Polycan inhibited TNF-α-induced IL-8 expression in dose-dependent manner. Furthermore, Polycan suppressed TNF-α-induced phosphorylation of MAPKs (ERK1/2, p38 and JNK), degradation of Iκ-Bα and nuclear translocation of NF-κB. In an in vivo constipation model, the number of fecal pellets per food intake was significantly increased in rats administered with Polycan, both 1 day and 7 days after loperamide treatment. The water content of fecal pellets was restored in the Polycan groups starting 7 days after loperamide treatment. In addition, Polycan intake significantly enhanced the gastrointestinal transit ratio of a charcoal meal but reduced the number of intestinal fecal pellets. Conclusions : These results suggest that Polycan suppressed TNF-α-induced inflammation by blocking both the MAPK and NF-κB pathways in HT-29 cells. Additionally, in a loperamide-induced constipation model, Polycan showed clear laxative effects by increasing the number of fecal pellets, fecal water content, and intestinal transit ratio of a charcoal meal.

Identification of the Kombucha Microorganisms That Make Up the SCOBY (SCOBY를 구성하는 콤부차 미생물 동정)

  • Sung Soo Park
    • Journal of Naturopathy
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • Background: Kombucha, known domestically as black tea mushroom, is a traditional fermented beverage from Northeast Asia made by fermenting a mixture of black tea extract and fungus. It is known for its high detoxifying, antimicrobial, and antioxidant activities, as well as its effects on relieving arthritis pain, reducing blood pressure, and addressing gastrointestinal or metabolic diseases. Purpose: This study aims to identify the main microbial system of Kombucha fermentation. Methods: The 16sRNA sequencing method was applied to analyze the microbial composition of Kombucha fermentation. Results: Bacterial, yeast, and fungi groups were identified. Through the identification of commercial Kombucha strains, it was confirmed that the bacteria in the Kombucha fermentation liquid and the pellicle were predominantly microbes from the Gluconacetobacter and Gluconobactor, which are involved in the fermentation of Kombucha. Among the yeasts, Sacchromycetes class, Starmerella bacillaris were identified with the highest expression rate. It was confirmed that the main microbial system fermenting Kombucha is SCOBY(Symbiotic Culture of Bacteria and Yeast), and that different strains are prominently expressed compared to the foreign Kombucha, which is mainly composed of Acetobacter acetic bacteria and Zygosaccharomyces yeast commonly. Conclusions: This study highlights the complexity and diversity of the microbial ecosystem in Kombucha fermentation, and comparative analysis with commercial strains reveals the potential for diversification of SCOBY to improve the functional properties of Kombucha. Future studies will investigate microbial interactions within the SCOBY and their impact on the health-promoting properties of Kombucha.

Anti-inflammatory effects of seed ethanolic extracts of the common buckwheat and tartary buckwheat are mediated through the suppression of inducible nitric oxide synthase and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophage cells (일반메밀과 쓴메밀 종실 추출물의 RAW 264.7 대식세포에서 LPS에 의해 유도되는 iNOS 및 염증성 사이토카인 발현 저해를 통한 항염증 효과 비교)

  • Kim, Su Jeong;Sohn, Hwang Bae;Lee, Kyung-Tae;Shin, Ji-Sun;Kim, Suyeon;Nam, Jung Hwan;Hong, Su Young;Suh, Jong Taek;Chang, Dong Chil;Kim, Yul Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.565-575
    • /
    • 2019
  • The ethanolic seed extracts of the common buckwheat (CB) and tartary buckwheat (TB) were examined for their anti-oxidant and anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW 264.7 cells. In this study, it was observed that the rutin content of TB extracts was 65-78 times higher than the CB extracts, while quercetin was only detected in the TB extracts. In addition, TB extracts were observed to have 1.8-2.0 times higher flavonoid and polyphenolic content than the CB extracts. Cytotoxicity was not observed when both the buckwheat extracts were evaluated at concentrations in the range of 6.25-400 ㎍/mL. The treatment with TB extracts significantly suppressed the LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression at the protein and mRNA levels. The TB extracts more potently inhibited the LPS-induced production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 than the CB extracts. The mRNA levels of TNF-α, IL-1β, and IL-6 were also significantly inhibited both by the TB and CB extracts in a pattern similar to their production.

Optimal Extract Condition for the Enhancement of Anticancer Activities of Artemisia princeps Pampanini (강화 사자발쑥의 항암활성 증진을 위한 추출조건의 최적화)

  • Kwon, Min-Chul;Kim, Cheol-Hee;Kim, Hyou-Sung;Lee, Sang-Hee;Chio, Geun-Pyo;Park, Uk-Yeon;You, Sang-Guan;Lee, Hyeon-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.4
    • /
    • pp.233-240
    • /
    • 2007
  • Extractions of Artemisia princeps Pampanini were obtained by using water and ethanol at different temperatures ($60^{\circ}C,\;100^{\circ}C$) with or without ultrasonification process (40 kHz). Yield of ultrasonificated extracts were about 20% higher than that of control group. Cytotoxicity of all conditions through adding 1.0 mg/$m{\ell}$ was below 37%, and treated with ultrasonification group was lower than the other group, about $5{\sim}8%$. $100^{\circ}C$ water extract with ultrasonification was higher anticancer activities as maximum 73% and higher selectivities at concentrations over 0.8 mg/$m{\ell}$. The extracts treated with ultrasonification were higher anticancer activities than the control. Densitometric analysis of bcl-2 revealed that extracts of high anticancer activity had low density. This results suggest that expression of bcl-2 protein by adding of Artemisia princeps Pampanini extracts relative to taking cancer. To conclude, optimum condition for efficient extraction of Artemisia princeps Pampanini is using water with ultrasonification at over $60^{\circ}C$ below $100^{\circ}C$.

Antihepatotoxic effect of ethanol extracts from steam-dried ginseng berry on ᴅ-galactosamine/lipopolysaccharide-sensitized mice (ᴅ-galactosamine/lipopolysaccharide로 감작된 급성간독성 마우스 모델에서 인삼열매추출물의 간독성 개선 효과)

  • Jang, Su Kil;Park, Jun Sub;Ahn, Jeong Won;Jo, Boram;Kim, Hyun Soo;Kim, JeongHoon;Kim, Sang Yun;Park, Jung Youl;Lee, Do Ik;Park, Hee Yong;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.676-684
    • /
    • 2017
  • The present study aimed to examine the hepatoprotective effects of ethanol extracts from steam-dried ginseng berry (SGBE) in both $\text\tiny{D}$-Galactosamine/Lipopolysaccharide ($\text\tiny{D}$-GalN/LPS)-sensitized mice and in vitro models. Our results clearly demonstrated that SGBE significantly reduced the level of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase in blood, and $TNF{\alpha}$ was normalized in 8 h after the treatment with $\text\tiny{D}$-GalN/LPS. Coincidently, major organs remained unimpaired when compared to $\text\tiny{D}$-GalN/LPS control group. Moreover, p38, which stimulates expression of NAFLD-associated cytokines, was markedly inhibited when treated with SGBE. In vitro analysis revealed that the main components of SGBE, linoleic acid and ginsenoside Re/Rd, may play a role in protecting liver from $\text\tiny{D}$-GalN/LPS-induced toxicity. Finally, we concluded that SGBE may be a promising therapeutic agent for preventing damage to the liver.

Antioxidant, antibacterial, antifungal, and anti-inflammatory effects of 15 tree essential oils (수목 방향유 15종의 산화방지, 항세균, 항진균 및 항염증 효과)

  • Jo, Se Jin;Park, Mi-Jin;Guo, Rui Hong;Park, Jung Up;Yang, Ji Yoon;Kim, Jae-Woo;Lee, Sung-Suk;Kim, Young Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.535-542
    • /
    • 2018
  • The current study investigated the beneficial effects of 15 essential oils isolated from tree branches, leaves, and flowers. Among these oils, clove bud and Illicium anisatum oils showed the most potent anti-oxidant effects on 1,1-diphenyl-2-picrylhydrazyl and 2,2'azinbis-(3-ethyl-benzothiazoline-6-sulfonic acid) radical scavenging activities. Next, we evaluated the antibacterial effects of 15 essential oils on Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, Salmonella typhimurium, and Streptococcus mutans. Clove bud significantly decreased growth of 5 bacterial strains. In addition, clove bud, Magnolia kobus, Picea abies and Chamaecyparis obtuse significantly reduced growth of the fungi, Aspergillus fumigatus, Aspergillus ochraceus, Candida albicans and Trichophyton rubrum. Additionally, clove bud also remarkably reduced the expression of cyclooxygenase-2 and inducible NO synthase in lipopolysaccharide-activated RAW264.7 cells. These results indicate that essential oils isolated from trees, which exhibit antioxidant, antibacterial, antifungal and anti-inflammatory properties, may be potentially useful in the development of cosmetic ingredients.