• Title/Summary/Keyword: Follicle cell

Search Result 261, Processing Time 0.024 seconds

A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast (치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구)

  • Lee, Joong-Kyou;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming

  • Son, Myung Jin;Jeong, Jae Kap;Kwon, Youjeong;Ryu, Jae-Sung;Mun, Seon Ju;Kim, Hye Jin;Kim, Sung-wuk;Yoo, Sanghee;Kook, Jiae;Lee, Hongbum;Kim, Janghwan;Chung, Kyung-Sook
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.5.1-5.15
    • /
    • 2018
  • Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.

Ultrastructural Studies on the Oogenesis of the Pine moth, Dendrolimus spectabilis (Lasiocampidae) II. Vitelline Membrane and Chorion Formation (솔나방(Dendrolimus spectabilis) 난소의 미세구조 II. 난황막 및 난각형성과정)

  • Kim, Ji-Hyun;Kim, Jeong-Sang;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.52-60
    • /
    • 1994
  • The developing ovarian oocyte of Dendrolimus spectabilis has been studied by using electron microscopical techniques. After yolk formation the vitelline membrane was laid down in the intercellular space between the follicle cell and the oocyte. But before the vitelline membrane formation the granules with high electron density that the vitelline membrane precusor are observed in the follicle cell. At the late vitellogenesis stage these granules were transported into the intercellular space between the follicle cells and the oocyte. These granules fuse to each other and larger bodies which eventually produce the vitelline membrane. The vitelline membrane was distinguished into the light inner and dark outer membrane. Next the chorion was laid down. It was apparent that the chorion was laid down in the intercellular space immediately adjacent to the vitelline membrane, and that it was formed by the follicle cells only.

  • PDF

Aging of hair follicle stem cells and their niches

  • Hansaem Jang;Yemin Jo;Jung Hyun Lee;Sekyu Choi
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.2-9
    • /
    • 2023
  • Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth.

Development and Transformation of Oocyte' Follicle Cell for Korean Four Sillurid Fishes of Liobagrus and Pseudobagrus (Pisces: Silluriformes) (한국산 동자개속 및 퉁가리속 4종 어류의 난모세포에서 여포세포의 발달과 변형)

  • Baek, Hyun-A;Park, Jong-Young;Kim, Chi-Hong;Kim, Jong-Hwa
    • Korean Journal of Ichthyology
    • /
    • v.19 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • A histological study on development and transformation of the oocyte' follicle cell for Korean four sillurid fishes, Liobagrus obesus, L. mediadiposalis, Pseudobagrus koreanus, and P. brevicorpus was performed by light and electron microscopes. The follicular layer surrounding the oocyte consisted of an outer theca cell and an inner follicle cell (granulosa cell). The follicle cells of the oocyte were flatten cells at early oocyte but during vitellogenesis they were transformed it to a single layer of cuboidal cell, then to a single columnar cell layer, and finally to a layer covered with a substance secreted by themselves. Although the development and transformation of the follicle cells was similar to four species, the secreted materials, called an adhesive membrane, were divided into two types in its appearance and nature. Firstly, a jelly coat-like type was found in L. obesus and L. mediadiposalis, which they are presumed to be polysaccharides and mucoproteins in its nature and secondly, a granular type in P. koreanus and P. brevicopus, being mucoprotein. A zona radiata with about $0.6{\sim}3.1{\mu}m$ thin was present below the adhesive material secreted by the transformed-follicle cell's activity. The zona radiata was composed of two layers, a thin externa and a thick interna.

HAIR loss treatment effect and stem cell activator role of Yeast Constituent Extract (효모성분추출물의 탈모치료 효과와 줄기세포활성화제 역할)

  • Kim, Young-Sil;Lee, Hye-jin;Pack, Jung-Eun;Kim, Jin-Hwi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • The objective of this study is to find out the effect of yeast on hair loss treatment and the role of hair follicle stem cell activator, which is important in hair growth. The authors have recently produced a substance, which has no disgusting odor, does not precipitates and does not easily corrupt, to use instead of yeast acquired from raw rice wine(Makgeolli). The substance is named Yeast Constituent Extract(YCE). In this research, the Produced YCE was applied on the hair loss area of 10 Androgenic alopecia patients, twice every day for 6 months, in order to test the effect of hair loss treatment and the role of stem cell activator. As a result, all of the patients showed a significant growth of hair after 3 months of test, and showed much more growing, thickening and strengthening of hair after 6 months. As a result of measuring the number of hair strings in the same scalp region of the patients after 6 months, it is found that the density of hair has increased, indicating that the hair loss treatment was effective. Also the hair follicle stem cell was isolated from the patients and the contents of growth factors (IGF, VEGF, FGF, HGF) derived from hair follicle stem cell were measured with ELISA. As result, the amount is found to be about 10 times greater than before the test. The hair follicle stem cell contains many growth factors that affect growth of hair, so it takes a highly important role in hair loss treatment. The YCE that the authors have produced was found to be effective in increasing the contents of growth factors that are derived from hair follicle stem cell. Thus it can be inferred that the YCE plays a role as a stem cell activator that activates the hair follicle stem cells. In conclusion, the YCE is considered to be highly effective for hair loss treatment and to have a role as a stem cell activator.

Roles of Theca and Granulosa Cells in Follicular Steroidogenesis in Rana dybowskii (북방산 개구리 여포의 스테로이드생성과정에 협막세포와 난구세포의 역할)

  • 안련섭;소재목;권혁방
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.273-281
    • /
    • 1996
  • Previously, we have proposed a two-cell type model for follicular steroidogenesis inamphibians with Rana nigromacu lota. Present experiments were carried out to ascertain whether the model Is applicable to R. dybowskii. The role of theca layer were also reassessed by using granulosa cell-free pure theca layer (P-THEP). Theca/epithelium (THEP) layers, P-THEP layers, and granulosa cell enclosed-oocytes () were obtained from ovarian follicles of R. dybowskii by microdissection. Intact follicles (IFs) and different types of tissues were cultured for 6 hour in amphibian Ringer's m the presence or absence of FPII (0.05 gland/mi) or various steroid precursor (100 ng/ml). The amounts of product steroids converted by the components were measured by RIA. Exogenously added pregnenolone (P5) resulted in a marked increase in progesterone (P$_4$) by GCEOs (2143 pg/follicle) and IFs (2346 pg/follicle) but a smaller increase in P4 by THEP layer (495 pg/follicle). Addition of P$_4$ increased 17 a-hydroxyprogesterone (17 $\alpha$-OHP$_4$) levels by GCEOs (1118 pg/follicle) and IFs (1333 pg/follicle) but less by THEP layer (290 pg/follicle). However, much less amounts of P$_4$ or 17 $\alpha$-OHP$_4$ were producad by P-THEP layers than THEP in the presence of P5. Exogenous 1 7$\alpha$-OIIP$_4$ increased androstenedione (AD) levels by GCEOs (1415 pg/follicle) and IFs (561 pg/follicle) but not by THEP layers. In contrast, addition of AD resulted m a marked increase in testosterone (T) levels by TIIEP (2594 pg/follicle) and IFs (2223 pg/follide) but much less by GCEOs (339 pg/follicle). Exogenous T increased estradiol (E$_2$) levels by GCEOs (551pg/follicle) and IFs (887 pg/follicle), but not by THEP layer (<10 pg/follicle). Without addition of FPH or steroid precursors, very low or nondetectable levels of steroids were produced (< 20 pg/follicle) by all the types of follicular components examined. The data presented here indicate that the two-cell type model based on the study with R. nigromacu Iota is applicable to R. dybowskii and also suggest that the minor pathway, which convert P5 to 17$\alpha$-OHP$_4$, is not present in theca layer.

  • PDF

Probing Cell-Type Specific Gene Expression in the Ovarian Cells of Drosophila by P-Element Mediated Enhancer Detection (P-요소를 이용한 노랑초파리 난소에서의 세포특이적 유전자발현의 검출)

  • 계명찬;조경상;김경진;이정주
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.505-513
    • /
    • 1995
  • P-lement mediated enhancer detector lines (EDla) were screened for reporter gene (1acZ expression In the ovary of Drosophila mejanogaster Cell-type spedfic 1acZ expression can be grouped Into three parts such as in the geimline, soma, and both. LacZ expression In germline cells was devided into 2 types; expression in nurse cells or in both of the nurse cells and oocote. In the stage-9 to stage-lO follicles, lacZ expression was observed either In the whole follicle cells around oocote or in the subpopulation of follicle cells in egg chamber. lacZ expression in the subset of follicle cells are showed in the centripetal follicle cells or the columnar follicle cells except centripetal follicle cells. Several lines showed anterior to postedor gradient pattern of lacZ expression in the follicle cells. Interestingly there were 3 lines in which lacZ was expressed In the polar cells and/or the horder cells of egg chamber. These lacZ expression patterns in the different ovarian cells of independent EDla reflect the cell type-spedflc expression of maternal genes nesr the P-element insertion, and might provide a basis for cloning of genes involved in oogenesis of Drosophila.

  • PDF

Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells (Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도)

  • Min Woong Kim;Eung Ji Lee;Ha-Na Gil;Yong Ji Chung;Eun Mi Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This study was conducted to assess the effect of heptapeptide, composed of seven amino acids, on the activation of human hair cells isolated from human hair follicles. We have confirmed that the heptapeptide could bind to Lgr5 from the results of surface plasmon resonance (SPR) analysis. Heptapeptide enhanced the proliferation of human hair follicle dermal papilla cells (HHFDPCs) in a dose dependent manner. It induced the protein level of nuclear β-catenin, and the expressions of β-catenin downstream target genes, including LEF1, Cyc-D1 and c-Myc, in HHFDPCs. Heptapeptide significantly induced the phosphorylation of Akt and ERK, and the mRNA expressions of growth factors, including hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF), in HHFDPCs. In addition, heptapeptide significantly increased mRNA expression levels of differentiation-related transcription factors of human hair germinal matrix cells (HHGMCs) and differentiation markers of human hair outer root sheath cells (HHORSCs). Additionally, we investigated the effect of heptapeptide on human hair follicle stem cells (HHFSCs) differentiation and found that the heptapeptide reduced the mRNA and protein levels of stem cell markers, while it increased those levels of differentiation markers. These results have indicated that the heptapeptide promotes proliferation or differentiation of various types of hair follicle constituent cells through the induction of Wnt/β-catenin signaling. From the results, we have suggested that the heptapeptide in this study could be applied as a new functional material for the improvement of hair growth and alopecia.