• Title/Summary/Keyword: Fog-Cloud

Search Result 110, Processing Time 0.023 seconds

Big IoT Healthcare Data Analytics Framework Based on Fog and Cloud Computing

  • Alshammari, Hamoud;El-Ghany, Sameh Abd;Shehab, Abdulaziz
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1238-1249
    • /
    • 2020
  • Throughout the world, aging populations and doctor shortages have helped drive the increasing demand for smart healthcare systems. Recently, these systems have benefited from the evolution of the Internet of Things (IoT), big data, and machine learning. However, these advances result in the generation of large amounts of data, making healthcare data analysis a major issue. These data have a number of complex properties such as high-dimensionality, irregularity, and sparsity, which makes efficient processing difficult to implement. These challenges are met by big data analytics. In this paper, we propose an innovative analytic framework for big healthcare data that are collected either from IoT wearable devices or from archived patient medical images. The proposed method would efficiently address the data heterogeneity problem using middleware between heterogeneous data sources and MapReduce Hadoop clusters. Furthermore, the proposed framework enables the use of both fog computing and cloud platforms to handle the problems faced through online and offline data processing, data storage, and data classification. Additionally, it guarantees robust and secure knowledge of patient medical data.

Network Intelligence based on Network State Information for Connected Vehicles Utilizing Fog Computing (Fog Computing을 적용한 Connected Vehicle 환경에서 상태 정보에 기반한 네트워크 지능화)

  • Park, Seongjin;Yoo, Younghwan
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1420-1427
    • /
    • 2016
  • This paper proposes a method taking advantage of Fog computing and SDN in the connected vehicle environment which is having an unstable communication channel and a dynamic topology. For this purpose, the controller should understand the current state of the overall network by maintaining recent network topology, especially, the mobility information of mobile nodes. These are managed by the controller, and are important in unstable conditions in the mobile environment. The mobility levels are divided into 3 categories. We can efficiently exploit that information. By utilizing network state information, we suggest two outcomes. First, we reduce the control message overhead by adjusting the period of beacon messages. Second, we propose a recovery process to prepare the communication failure. We can efficiently recover connection failure through mobility information. Furthermore, we suggest a path recovery by decoupling the cloud level and the fog level in accordance with application data types. The simulation results show that the control message overhead and the connection failure time are decreased by approximately 55% and 5%, respectively in comparison to the existing method.

Sea Fog Detection Algorithm Using Visible and Near Infrared Bands (가시 밴드와 근적외 밴드를 이용한 해무 탐지 알고리즘)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.669-676
    • /
    • 2018
  • The Geostationary Ocean Color Imager(: GOCI) detects the sea fog at a high horizontal resolution of $500m{\times}500m$ using the Rayleigh corrected reflectance of 8 bands. The visible and the near infrared waves strongly reflect the characteristics of the earth surface, causing errors in cloud and fog detection. A threshold of the Band7 reflectance was set to detect the sea fog entering the land. When the region on which Band4 reflectance is larger than Band8 is determinated as cloud, the error over-estimated as sea fog is corrected by comparing the average reflectance with the surrounding region. The improved algorithm has been verified by comparing the fog images of the Cheollian satellite (COMS: Communication, Ocean, and Meteorological Satellite) as well as the visibility data from the Korea Meteorological Administration.

EVALUATION OF SEA FOG DETECTION USING A REMOTE SENSED DATA COMBINED METHOD

  • Heo, Ki-Young;Ha, Kyung-Ja;Kim, Jae-Hwan;Shim, Jae-Seol;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.294-297
    • /
    • 2007
  • Steam and advection fogs are frequently observed in the Yellow Sea located between Korea and China during the periods of March-April and June-July respectively. This study uses the remote sensing (RS) data for monitoring sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided an informative synopsis for the occurrence of steam and advection fogs through a ground truth. The RS data used in this study was GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and near-IR channel of GOES-9 and MTSAT-1R satellites was applied to estimate the extension of the sea fog. For the days examined, it was found that not only the DCD but also the texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind is used to provide a weak wind area less than threshold under stable condition of the surface wind around a fog event. The Laplacian computation for a measurement of the homogeneity was designed. A new combined method of DCD, QuikSCAT wind speed and Laplacian was applied in the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and Laplacian are -2.0 K, 8 m $s^{-1}$ and 0.1, respectively. The validation methods such as Heidke skill score, probability of detection, probability of false detection, true skill score and odds ratio show that the new combined method improves the detection of sea fog rather than DCD method.

  • PDF

A Remote Sensed Data Combined Method for Sea Fog Detection

  • Heo, Ki-Young;Kim, Jae-Hwan;Shim, Jae-Seol;Ha, Kyung-Ja;Suh, Ae-Sook;Oh, Hyun-Mi;Min, Se-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Steam and advection fogs are frequently observed in the Yellow Sea from March to July except for May. This study uses remote sensing (RS) data for the monitoring of sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided a valuable information for the occurrence of steam and advection fogs as a ground truth. The RS data used in this study were GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and shortwave IR channel of GOES-9 and MTSAT-1R satellites was applied to detect sea fog. The results showed that DCD, texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind data was used to provide the wind speed criteria for a fog event. The laplacian computation was designed for a measurement of the homogeneity. A new combined method, which includes DCD, QuikSCAT wind speed and laplacian computation, was applied to the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and laplacian are -2.0 K, $8m\;s^{-1}$ and 0.1, respectively. The validation results showed that the new combined method slightly improves the detection of sea fog compared to DCD method: improvements of the new combined method are $5{\sim}6%$ increases in the Heidke skill score, 10% decreases in the probability of false detection, and $30{\sim}40%$ increases in the odd ratio.

Design of Cloud-based Context-aware System Based on Falling Type

  • Kwon, TaeWoo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.44-50
    • /
    • 2017
  • To understand whether Falling, which is one of the causes of injuries, occurs, various behavior recognition research is proceeding. However, in most research recognize only the fact that Falling has occurred and provide the service. As well as the occurrence of the Falling, the risk varies greatly based on the type of Falling and the situation before and after the Falling. Therefore, when Falling occurs, it is necessary to infer the user's current situation and provide appropriate services. In this paper, we propose to base on Fog Computing and Cloud Computing to design Context-aware System using analysis of behavior data and process sensor data in real-time. This system solved the problem of increase latency and server overload due to large capacity sensor data.

Sensor Data Collection & Refining System for Machine Learning-Based Cloud (기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.165-170
    • /
    • 2021
  • Machine learning has recently been applied to research in most areas. This is because the results of machine learning are not determined, but the learning of input data creates the objective function, which enables the determination of new data. In addition, the increase in accumulated data affects the accuracy of machine learning results. The data collected here is an important factor in machine learning. The proposed system is a convergence system of cloud systems and local fog systems for service delivery. Thus, the cloud system provides machine learning and infrastructure for services, while the fog system is located in the middle of the cloud and the user to collect and refine data. The data for this application shall be based on the Sensitive data generated by smart devices. The machine learning technique applied to this system uses SVM algorithm for classification and RNN algorithm for status recognition.

Development of Day Fog Detection Algorithm Based on the Optical and Textural Characteristics Using Himawari-8 Data

  • Han, Ji-Hye;Suh, Myoung-Seok;Kim, So-Hyeong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.117-136
    • /
    • 2019
  • In this study, a hybrid-type of day fog detection algorithm (DFDA) was developed based on the optical and textural characteristics of fog top, using the Himawari-8 /Advanced Himawari Imager data. Supplementary data, such as temperatures of numerical weather prediction model and sea surface temperatures of operational sea surface temperature and sea ice analysis, were used for fog detection. And 10 minutes data from visibility meter from the Korea Meteorological Administration were used for a quantitative verification of the fog detection results. Normalized albedo of fog top was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values (ITVs) for the fog detection elements were selected using hat-shaped threshold values through frequency distribution analysis of fog cases.And the ITVs were optimized through the iteration method in terms of maximization of POD and minimization of FAR. The visual inspection and a quantitative verification using a visibility meter showed that the DFDA successfully detected a wide range of fog. The quantitative verification in both training and verification cases, the average POD (FAR) was 0.75 (0.41) and 0.74 (0.46), respectively. However, sophistication of the threshold values of the detection elements, as well as utilization of other channel data are necessary as the fog detection levels vary for different fog cases(POD: 0.65-0.87, FAR: 0.30-0.53).

An Analysis of 'Chunsansoesong' by Mi Fu - Underlining the Poem within the Painting - (미불의 춘산서송도<春山瑞松圖> 분석 -'화중유시 (畵中有詩)' 의 특성을 중심으로-)

  • Wang Hyung-Yul
    • Journal of Science of Art and Design
    • /
    • v.6
    • /
    • pp.100-118
    • /
    • 2004
  • Mi Fu, who was associated with Wen Tong, invented the Mijoem Technique (Dotting Technique) in landscape painting with his son Mi Youren. His landscapes, which referred to Dong Yuan's landscape technique and was inspired by the scenery of Jiang Nan, illustrate the mood of a cloud-covered foggy landscape by liberally applying dots with ink. 'Chunsansoesong' which is considered done by Mi Fu, clearly shows the virtues of ink painting's spreading, absorbing and omission techniques. This simply rendered landscape - whose mountains and hills are wrapped in both clouds and fog - displays exquisiteness by using small dots. In 'Chunsansoesong', the characteristics of Song painting: a 'vital energy', a 'poem within the painting', a 'beauty of margin', a 'beauty of one brush stroke, and a 'display of inner meanings' are implicatively expressed This is because it's simple but connotatively delineative. There is the characteristic of a 'poem within the painting' when analyzing the both fragmented and combined 'Chunsansoesong'. The margins support an imaginative space as the height of the mountains get higher which result in deepening both the width and depth of the landscape space. Furthermore, the soft thickness of ink, clouds, pine trees, and pavilion evoke delineative feelings and a desire to write a poem Every thing in 'Chunsansoesong' is enveloped in both clouds and fog regardless of its distance and this delivers boundless feelings of Oriental mystery and urges a desire for 'writing a poem'. The pavilion that faces the cloud and fog-bound mountains especially flames the poetic urge further by inducing viewers' poetic imaginations. As we reviewed above, 'Chunsansoesong's cloud and fog-covered landscape is a good example that clearly showcases the characteristics of a 'Poem within the Painting'.

  • PDF

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.