• Title/Summary/Keyword: Fog-Cloud

Search Result 110, Processing Time 0.038 seconds

Adaptive Deadline-aware Scheme (ADAS) for Data Migration between Cloud and Fog Layers

  • Khalid, Adnan;Shahbaz, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1002-1015
    • /
    • 2018
  • The advent of Internet of Things (IoT) and the evident inadequacy of Cloud networks concerning management of numerous end nodes have brought about a shift of paradigm giving birth to Fog computing. Fog computing is an extension of Cloud computing that extends Cloud resources at the edge of the network, closer to the user. Cloud computing has become one of the essential needs of people over the Internet but with the emerging concept of IoT, traditional Clouds seem inadequate. IoT entails extremely low latency and for that, the Cloud servers that are distant and unknown to the user appear to be unsuitable. With the help of Fog computing, the Fog devices installed would be closer to the user that will provide an immediate storage for the frequently needed data. This paper discusses data migration between different storage types especially between Cloud devices and then presents a mechanism to migrate data between Cloud and Fog Layer. We call this mechanism Adaptive Deadline-Aware Scheme (ADAS) for Data migration between Cloud and Fog. We will demonstrate that we can access and process latency sensitive "hot" data through the proposed ADAS more efficiently than with a traditional Cloud setup.

Investigation on Cloud Properties for Fog Modification at Daegwallyeong Mountains (대관령 산악지역 안개조절을 위한 구름특성 조사)

  • Yang, Ha-Young;Oh, Sung-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.45-56
    • /
    • 2005
  • Cloud meteorological properties over Daegwallyeong mountain area were analyzed for experimental cloud seeding which related to a feasibility study of fog modification. The cloud seeding for fog modification has been refocused to using hygroscopic chemical to dissipate warm fog. In this study, the statistics of fog observations were analyzed and discussed. Fog properties mostly showed the Summer warm fog, the early morning occurrences before to 6 o'clock AM, and 7 to 9 o'clock dissipation in the statistics. In the Spring and Winter season an easterly wind produced cold fog which is good applied with AgI seeding agents. Extrapolation of these results suggests that the suitable seeding method and material for fog modification will be introduced from the actual seeding experiments in the cold and warm fog.

The Design of Dynamic Fog Cloud System using mDBaaS

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jong-Yong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-66
    • /
    • 2017
  • Cloud computing has evolved into a core computing infrastructure for the internet that encompasses content, as well as communications, applications and commerce. By providing powerful computing and communications capabilities in the palm of the hand everywhere with a variety of smart devices, mobile applications such as virtual reality, sensing and navigation have emerged and radically changed the patterns people live. The data that is generated is getting bigger. Cloud computing, on the other hand, has problems with system load and speed due to the collection, processing and control of remote data. To solve this problem, fog computing has been proposed in which data is collected and processed at an edge. In this paper, we propose a system that dynamically selects a fog server that acts as a cloud in the edge. It serves as a mediator in the cloud, and provides information on the services and systems belonging to the cloud to the mobile device so that the mobile device can act as a fog. When the role of the fog system is complete, we provide it to the cloud to virtualize the fog. The heterogeneous problem of data of mobile nodes can be solved by using mDBaaS (Mobile DataBase as a Service) and we propose a system design method for this.

Scalable Service Placement in the Fog Computing Environment for the IoT-Based Smart City

  • Choi, Jonghwa;Ahn, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.440-448
    • /
    • 2019
  • The Internet of Things (IoT) is one of the main enablers for situation awareness needed in accomplishing smart cities. IoT devices, especially for monitoring purposes, have stringent timing requirements which may not be met by cloud computing. This deficiency of cloud computing can be overcome by fog computing for which fog nodes are placed close to IoT devices. Because of low capabilities of fog nodes compared to cloud data centers, fog nodes may not be deployed with all the services required by IoT devices. Thus, in this article, we focus on the issue of fog service placement and present the recent research trends in this issue. Most of the literature on fog service placement deals with determining an appropriate fog node satisfying the various requirements like delay from the perspective of one or more service requests. In this article, we aim to effectively place fog services in accordance with the pre-obtained service demands, which may have been collected during the prior time interval, instead of on-demand service placement for one or more service requests. The concept of the logical fog network is newly presented for the sake of the scalability of fog service placement in a large-scale smart city. The logical fog network is formed in a tree topology rooted at the cloud data center. Based on the logical fog network, a service placement approach is proposed so that services can be placed on fog nodes in a resource-effective way.

A Study on the Security Framework for IoT Services based on Cloud and Fog Computing (클라우드와 포그 컴퓨팅 기반 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1928-1939
    • /
    • 2017
  • Fog computing is another paradigm of the cloud computing, which extends the ubiquitous services to applications on many connected devices in the IoT (Internet of Things). In general, if we access a lot of IoT devices with existing cloud, we waste a huge amount of bandwidth and work efficiency becomes low. So we apply the paradigm called fog between IoT devices and cloud. The network architecture based on cloud and fog computing discloses the security and privacy issues according to mixed paradigm. There are so many security issues in many aspects. Moreover many IoT devices are connected at fog and they generate much data, therefore light and efficient security mechanism is needed. For example, with inappropriate encryption or authentication algorithm, it causes a huge bandwidth loss. In this paper, we consider issues related with data encryption and authentication mechanism in the network architecture for cloud and fog-based M2M (Machine to Machine) IoT services. This includes trusted encryption and authentication algorithm, and key generation method. The contribution of this paper is to provide efficient security mechanisms for the proposed service architecture. We implemented the envisaged conceptual security check mechanisms and verified their performance.

Cloud and Fog Computing Amalgamation for Data Agitation and Guard Intensification in Health Care Applications

  • L. Arulmozhiselvan;E. Uma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.685-703
    • /
    • 2024
  • Cloud computing provides each consumer with a large-scale computing tool. Different Cyber Attacks can potentially target cloud computing systems, as most cloud computing systems offer services to many people who are not known to be trustworthy. Therefore, to protect that Virtual Machine from threats, a cloud computing system must incorporate some security monitoring framework. There is a tradeoff between the security level of the security system and the performance of the system in this scenario. If strong security is needed, then the service of stronger security using more rules or patterns is provided, since it needs much more computing resources. A new way of security system is introduced in this work in cloud environments to the VM on account of resources allocated to customers are ease. The main spike of Fog computing is part of the cloud server's work in the ongoing study tells the step-by-step cloud server to change the tremendous measurement of information because the endeavor apps are relocated to the cloud to keep the framework cost. The cloud server is devouring and changing a huge measure of information step by step to reduce complications. The Medical Data Health-Care (MDHC) records are stored in Cloud datacenters and Fog layer based on the guard intensity and the key is provoked for ingress the file. The monitoring center sustains the Activity Log, Risk Table, and Health Records. Cloud computing and Fog computing were combined in this paper to review data movement and safe information about MDHC.

Behavior recognition system based fog cloud computing

  • Lee, Seok-Woo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.29-37
    • /
    • 2017
  • The current behavior recognition system don't match data formats between sensor data measured by user's sensor module or device. Therefore, it is necessary to support data processing, sharing and collaboration services between users and behavior recognition system in order to process sensor data of a large capacity, which is another formats. It is also necessary for real time interaction with users and behavior recognition system. To solve this problem, we propose fog cloud based behavior recognition system for human body sensor data processing. Fog cloud based behavior recognition system solve data standard formats in DbaaS (Database as a System) cloud by servicing fog cloud to solve heterogeneity of sensor data measured in user's sensor module or device. In addition, by placing fog cloud between users and cloud, proximity between users and servers is increased, allowing for real time interaction. Based on this, we propose behavior recognition system for user's behavior recognition and service to observers in collaborative environment. Based on the proposed system, it solves the problem of servers overload due to large sensor data and the inability of real time interaction due to non-proximity between users and servers. This shows the process of delivering behavior recognition services that are consistent and capable of real time interaction.

Service Architecture Models For Fog Computing: A Remedy for Latency Issues in Data Access from Clouds

  • Khalid, Adnan;Shahbaz, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2310-2345
    • /
    • 2017
  • With the emergence of the Internet of Things (IoT) the world is projecting towards a scenario where every object in the world (including humans) acts as a sender and receiver of data and if we were to see that concept mature we would soon be talking of billions more users of the cloud networks. The cloud technology is a very apt alternative to permanent storage when it comes to bulk storage and reporting. It has however shown weaknesses concerning real-time data accessibility and processing. The bandwidth availability of the cloud networks is limited and combined with the highly centralized storage structure and geographical vastness of the network in terms of distance from the end user the cloud just does not seem like a friendly environment for real-time IOT data. This paper aims at highlighting the importance of Flavio Bonomi's idea of Fog Computing which has been glamorized and marketed by Cisco but has not yet been given a proper service architecture that would explain how it would be used in terms of various service models i-e IaaS, PaaS and SaaS, of the Cloud. The main contribution of the paper would be models for IaaS, PaaS and SaaS for Fog environments. The paper would conclude by highlighting the importance of the presented models and giving a consolidated overview of how they would work. It would also calculate the respective latencies for fog and cloud to prove that our models would work. We have used CloudSim and iFogSim to show the effectiveness of the paradigm shift from traditional cloud architecture to our Fog architecture.

Toward Energy-Efficient Task Offloading Schemes in Fog Computing: A Survey

  • Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.

EXECUTION TIME AND POWER CONSUMPTION OPTIMIZATION in FOG COMPUTING ENVIRONMENT

  • Alghamdi, Anwar;Alzahrani, Ahmed;Thayananthan, Vijey
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.137-142
    • /
    • 2021
  • The Internet of Things (IoT) paradigm is at the forefront of present and future research activities. The huge amount of sensing data from IoT devices needing to be processed is increasing dramatically in volume, variety, and velocity. In response, cloud computing was involved in handling the challenges of collecting, storing, and processing jobs. The fog computing technology is a model that is used to support cloud computing by implementing pre-processing jobs close to the end-user for realizing low latency, less power consumption in the cloud side, and high scalability. However, it may be that some resources in fog computing networks are not suitable for some kind of jobs, or the number of requests increases outside capacity. So, it is more efficient to decrease sending jobs to the cloud. Hence some other fog resources are idle, and it is better to be federated rather than forwarding them to the cloud server. Obviously, this issue affects the performance of the fog environment when dealing with big data applications or applications that are sensitive to time processing. This research aims to build a fog topology job scheduling (FTJS) to schedule the incoming jobs which are generated from the IoT devices and discover all available fog nodes with their capabilities. Also, the fog topology job placement algorithm is introduced to deploy jobs into appropriate resources in the network effectively. Finally, by comparing our result with the state-of-art first come first serve (FCFS) scheduling technique, the overall execution time is reduced significantly by approximately 20%, the energy consumption in the cloud side is reduced by 18%.