
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

137

Manuscript received January 5, 2021
Manuscript revised January 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.1.18

EXECUTION TIME AND POWER CONSUMPTION
OPTIMIZATION in FOG COMPUTING ENVIRONMENT

Anwar Alghamdi 1† , Ahmed Alzahrani 2††, Vijey Thayananthan 3††,

Department of Computer Science, King Abdul-Aziz University, Jeddah, Saudi Arabia

Summary
The Internet of Things (IoT) paradigm is at the forefront of present
and future research activities. The huge amount of sensing data
from IoT devices needing to be processed is increasing
dramatically in volume, variety, and velocity. In response, cloud
computing was involved in handling the challenges of collecting,
storing, and processing jobs. The fog computing technology is a
model that is used to support cloud computing by implementing
pre-processing jobs close to the end-user for realizing low latency,
less power consumption in the cloud side, and high scalability.
However, it may be that some resources in fog computing
networks are not suitable for some kind of jobs, or the number of
requests increases outside capacity. So, it is more efficient to
decrease sending jobs to the cloud. Hence some other fog
resources are idle, and it is better to be federated rather than
forwarding them to the cloud server. Obviously, this issue affects
the performance of the fog environment when dealing with big
data applications or applications that are sensitive to time
processing. This research aims to build a fog topology job
scheduling (FTJS) to schedule the incoming jobs which are
generated from the IoT devices and discover all available fog
nodes with their capabilities. Also, the fog topology job placement
algorithm is introduced to deploy jobs into appropriate resources
in the network effectively. Finally, by comparing our result with
the state-of-art first come first serve (FCFS) scheduling technique,
the overall execution time is reduced significantly by
approximately 20%, the energy consumption in the cloud side is
reduced by 18%.

Key words:
Fog Computing, Job Scheduling, Resource Management,
Execution Time, Power Consumption.

1. Introduction

A modern trend in technology and communications is
the Internet of Things (IoT). The IoT can be defined briefly
as anything that can be connected to the Internet and
provide or produce data [1], including all online objects
such as smart cameras, wearable sensors, environmental
sensors, smart home appliances, cars, etc. Currently, the
number of IoT devices in our world has been reaching
approximately 75 billion things in 2025 [2]. The IoT
technology improves and facilitates the quality of human
life; hence a huge amount of data is generated through the
IoT devices, which produces an unnecessary burden for data
storage and analysis systems [3]. As a result, cloud
computing is a critical source that can deal with this

enormous data and applying some analysis on it. There are
a lot of applications can be considered as sensitive
applications for time responding such as smart traffic
control applications, health monitoring applications, and
surveillance camera system. Obviously, the enormous data
produced by some of these applications can impose heavy
network burdens. It is not efficient to offload all of this
amount of data to the cloud and then return it [4]. Therefore,
in 2012, Bonomi proposed a new term called fog computing
[1]. Fog computing is a modern model which considered as
an extension of clouds to provide services to network parties
and offers a technique to solve the previous problem.

The distributed fog computing is placed between the
IoT devices and cloud servers. Three layers are used in the
Fog computing architecture: the bottom layer contains IoT
devices such as surveillance cameras, health wearable
devices, smart home appliances. The fog computing layer is
the middle layer, which has resources like routers,
computers, and gateways. The cloud layer consists of
servers and data centers, as shown in Fig.1.

In general, fog computing and cloud servers are
complementary to each other, and the significant goal of
placing fog computing in an IoT environment is to support
and increase cloud efficiency. Recently, Google has
invented the federated learning (FL) approach, which
mitigates the offloading to the cloud server. The main idea
is to assign a specific dataset for each IoT device and an
aggregation server at the network edge. Generally, the IoT
device has its own model that trains the data locally instead
of federating it to the centralized cloud. This approach has
been adopted in many applications, such as in smart cities
[6] and health care [7].

 Both fog computing and cloud computing have
similar features. However, fog computing is characterized
by including geographical distribution, interaction in real-
time, mobility support, heterogeneity, and interoperability
[5]. Moreover, in fog computing, all nodes can execute the
jobs instead of a single node when high performance is
needed. Overall, fog computing is a suitable concept to
increase the efficiency of IoT-cloud environments since it
can make a reduction in latency time, network traffic, and
energy consumption. However, this concept also has
challenges because of the novelty. One of these challenges
is mentioned to resource utilization and scheduling [1].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

138

The concept of job scheduling in fog computing means

placing a series of jobs to fog resources effectively. Placing
too many jobs in fog resources can reduce the execution
time, but the power consumption might be increased.
However, forwarding the jobs into the cloud side can
migrate the power consumption in fog computing, but the
execution time would be increased. Therefore, an effective
job scheduling and placement strategy are necessary
considering the tradeoff between energy consumption and
execution time. Also, optimize the usage of these resources
Quality of Service (QoS) requirements. In this paper, we
propose a tradeoff fog topology job scheduling (FTJS)
strategy for scheduling the incoming jobs and place them in
the suitable cloud-fog resources by utilizing all available
resources in the whole network with their capabilities. The
main contributions to this paper are following:

1- The fog topology job scheduling (FTJS)

algorithm is designed to receive the incoming job and
detect all available resources in the system.

2- The fog topology job placement (FTJP) algorithm
is designed to place the ordered jobs in the suitable nodes.

3- The energy consumption and execution time have
been reduced significantly.

2. Related Work

The scheduling concept definition is to determine an
best solution for placing a set of jobs J= {j1, j2,...,jn} on a set
of machines M = {m1,m2, ..., mm}. One of the challenges in
fog computing is to select suitable edge resources to place
computation jobs from cloud and IoT devices. There is
needed for efficient selector algorithms that can address this
issue by considering the availability of edge resources with
their capabilities [8]. In [9], the authors proposed a new
method for managing mobile and edge devices. The devices

are distributed in decentralized nodes. The IoT devices can
be connected as peer-to-peer and decentralized, so this
paper has solved the concepts related to IoT infrastructure.
The problem of distributing tasks in fog computing has
gained attention from researchers recently. The authors in
[10] have analyzed the offloading policy between multiple
fog nodes in a ring topology. In [11], a distributed policy
for tasks assignment that can be executed efficiently in the
network edge cloud has been proposed. The author has not
considered the communication between the fog-to-cloud
and IoT-to-cloud. The scalability in this model is limited
since the cloud servers send their status continuously to the
mobile subscribers, and it will be difficult with a larger
amount of edge devices.

A collection of predefined constraints and objective
functions [12] can be used to plan the work. Maximizing the
use of available resources and minimizing the waiting
period on a job is one of the objectives of work scheduling
[13]. In [14], the authors divide the scheduling algorithms
for cloud and edge computing into two groups: traditional
algorithms and smart algorithms. For small scheduling
problems, traditional algorithms are suitable, but the issue
arises in large scheduling jobs. Therefore, they tried to
enhance the solutions by selecting efficient algorithms such
as meta-heuristic algorithms and heuristic for large complex
problems.

The purpose of the research in [15] is to reduce
network usage by presenting an optimization policy for data
placement in the fog environment. This can be achieved by
finding out the closest path between the fog device and the
data source (IoT device). Minimizing the execution time
and maximizing the throughput are achieved in the paper
[16]. The algorithm distributes the workload on the fog
resources environment. Also, a job scheduling technique is
applied for Virtual Machines (VM) based on the service
level agreement. In the paper [17], the authors demonstrate
an architecture for mapping and migrating the service
between the cloud and fog computing. The decision rule
relies on three conditions: completion time, services sizes,
and the capacity of fog resources.

In the first come first serve (FCFS) scheduling method,
new jobs are placed at the end of the queue. From the
beginning of the queue, the first job still runs first. The
FCFS method for scheduling tasks is the basis of the round-
robin method. For fixed times, resources are allocated to
jobs. This strategy has the benefit of load balancing [18].
The authors in [19] propose an algorithm that reduces the
cost of the delay and energy consumption through assigning
resources and communications to global user equipments
(UEs). In their algorithm, they study a multiuser offloading
challenge with the indeterminate job requirement, even
though the performance is enhanced significantly and
cannot guarantee execution delay.

Fig. 1 The cloud-fog architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

139

3. Fog Topology Job Scheduling

In this section, we propose a fog topology job
scheduling (FTJS) algorithm, which can reduce the waiting
times caused by the FCFS strategy. Most of the fog
computing systems use the FCFS strategy, which executes
one job at a time. Obviously, this strategy is not efficient
when the system is dealing with a huge number of jobs.
Moreover, the job priority is not considered in this strategy
as well.

Suppose the system topology consists of 4 main areas,
and each area has 10 fog resource nodes. So, we have 40
fog resources that can execute the job in a fog computing
network. When any nodes in the system cannot accept any
more jobs, it would be migrated to the cloud side. In the
proposed approach, we add a distribution model between
the incoming jobs and the system. The size of the model is
L, which is the number of jobs to be executed in the system,
as shown in Fig.2.

Once the scheduling process starts, all the jobs would

be placed into the distribution model and allocate to the
appropriate nodes in the fog system. Also, the devices in the
system would be scanned in each periodical scheduling
cycle. The purpose of the scanning technique is to detect all
available resources and their capabilities in the system.
After determining the free and suitable resources in the
system, we acquire a set of waiting jobs in the distribution
model order by the priority.

Algorithm 1 describes the periodical scheduling cycle.

Firstly, the algorithm scans the system and discovers the set
N of M free resources. Secondly, gathering the set J of L
from the distribution model ordered by the priority. Thirdly,
placing each job J into N until all N resources are full.
Fourthly, if all the jobs L are placed, the current scheduling
cycle s will be terminated and suspended until the next
scheduling cycle. Finally, if the job is rejected and cannot
be executed in the fog system, it will be migrated to the
cloud side to be executed. This usually happens when the
jobs require multi-core processors to be implemented, such
as big data applications.

Algorithm 1 fog topology job scheduling (FTJS)

If scheduling cycle s is launched then
 scan the fog system and discover the set N of M free
resources: N = {n1,…,nM}
 gather the set J of L from distribution model: J =
{j1,…,jL}
 Job Placement (J , N)
 Algorithm 2
 If all the jobs in L are executed then
 terminate the scheduling cycle s+1
 else if ji € J is rejected then
 if multi_core(ji) == true then
 migrate_to_cloud (ji)
 terminate the scheduling cycle s+1
 else
 reserve space in distribution model

4. Fog Topology Job Placement

The topology of the fog computing network consists
of three layers: cloud server layer, fog nodes layer, and
mobile or sensor devices layer. The fog nodes layer usually
includes more than areas in the same level, and each area
has many fog device nodes. The red nodes cannot accept
any more jobs. The blue nodes have some jobs to be
executed and can accept more jobs. The green nodes are idle,
and no jobs have been allocated to them, as shown in Fig3.
So, we introduce another algorithm, which determines the
placements for the set of jobs in the distribution model into
the free nodes in the fog computing network, so the system
utilization is exploited.

Let J = { j1, j2, …, jL} be the set of L waiting jobs in
the distribution model that are ordered by the priority. The
waiting job jj in the distribution model has its own priority
wi . The meaning of the priority is the required cores to
execute the job. Let N = { n1, n2, …, nm } the sets of
available nodes, which derives from the set acquired in
Algorithm 1. Eventually, we want to determine a
placement for the set of jobs J into the free nodes N, with
the profit of maximizing the system utilization, as shown
in equation (1).
 𝑀𝑎𝑥: ∑ ∑ 𝑥௜௝

ெ
௝ୀଵ

௅
௜ୀଵ 𝑛௜ ሺ1ሻ

 𝑆.𝑇: ∑ 𝑥௜௝
௠
௝ୀଵ ൑ 1,∀𝑖 ൌ 1,2,3, … . , 𝐿

 ∑ 𝑥௜௝
௅
௜ୀଵ 𝑤௜ ൑ 𝐶௝ ∀𝑗 ൌ 1,2,3, … . ,𝑀

Fig. 2 Fog topology job environment

Fig. 3 Areas and nodes in fog system

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

140

When the job ji is placed in the fog node ni, the value of
xij = 1, in case the job ji is not placed in the fog node ni, the
value of xij = 0. Each fog node ni has the capacity of Cj.
Obviously, the capacity will be reduced if more jobs are
coming in that fog node.

The key goal of our solution is to reduce the job
execution time and power consumption in the fog
computing network by improving the job placement process.
The job scheduling and placement strategies play a
significant role in saving energy and speeding up the system
performance through utilizing all available nodes
considering their capabilities. For instance, in Fig.3, if we
place more jobs in Area1, there would be a waste of time
and energy because no fog nodes can accept any more jobs
at this current time. Therefore, the Area2 is a better choice
since there are three idle fog nodes.

Algorithm 2 describes the job placement process. The
algorithm receives two inputs: the set of free and available
nodes N and the set of jobs J waiting to be executed, which
are coming from Algorithm 1. Firstly, the fog nodes are
sorted and ranked increasingly depending on their
remaining space for a new job. Secondly, the jobs are sorted
depending on their priority. In this case, we assume the job
is already ordered by assigned priority. Thirdly, the
algorithm scans the whole system regularly and updates the
set of fog nodes. Finally, the jobs are placed in the available
fog nodes according to the priority.

Algorithm 2 Job Placement

Input: the set N of M nodes: N= { n1, n2, … , nm }
 the set J of L waiting jobs in the distribution
model: J = { j1, j2 , … , jL}
 sort and rank each ni increasingly by free space for
jobs
 sort and add the job ji to PR by priority
 for each job € jpr DO
 scan the system to obtain updated set N of free
fog nodes
 if ni has more space for jpr then
 return placing jpr in ni

 else
 continue

5. Simulation and Result

The simulation focuses on applying the proposed fog
topology job scheduling algorithm in the fog computing
environment to present and validate the effusiveness of our
method. For simplicity and taking into account the principle,
we consider the scenario with 4 main areas, and each area
has 10 nodes. It means we have at maximum 44 available
resources distributed in two layers of fog and IoT. Table 1
illustrates the characteristics of each device in the topology.

Table 1: Characteristics of the devices in the system

Characteristic Cloud
Fog Resources

Proxy Router Camera

CPU
50000
(MIPS)

3000
MIPS

2500
(MIPS)

600
(MIPS)

RAM 1 T.B 6 G.B 4 G.B 1 G.B

Uplink
latency

None 100 5 2

Uplink
bandwidth

100 10000 10000 10000

Downlink
bandwidth

100 10000 10000 10000

Parent None Cloud Proxy Router

To present the efficient performance of our method at

varied workloads, we selected 4 groups of tasks. The total
workloads for each group are 10, 20, 40, and 60,
respectively. We conduct the simulation using the iFogSim
tool on a computer equipped with Intel® i5 Core 2.40 GHz
running windows 10 with 64-bit.

Since the FCFS method is the most popular in cloud
and fog computing, and it is already implemented in the
iFogSim simulator, we compare our method FTJS with the
state-of-art FCFS scheduling technique.

Fig. 3 Execution time comparison

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

141

Table 2 demonstrates the average execution time for our
method FTJS and FCFS.

Table 2: Comparison of average execution time

Method Group Workloads Execution time

FTJS

1 10 9
2 20 18
3 40 37
4 60 54

FCFS

1 10 11
2 20 22
3 40 46
4 60 68

The average execution time for each method as follow:

 FTJS: (9+18+37+54)/4 = 29.5

 FCFS: (11+22+46+68)/4 = 36.75

As shown in Fig.4, the execution time is reduced in our
proposed FTJS compared with FCFS by 20%. The reason
for this is to use all possible fog nodes in the topology and
try to keep the job execution in the fog layer rather than in
the cloud side. As mentioned before, the benefit of using
fog layers is to migrate the delay in the IoT-cloud
environment by implementing the job close to the IoT
devices.

The energy consumption on the cloud side is shown in
Fig.5. In our method FTJS, the power consumption is lower
than in FCFS by 18%. This is due to the FCFS method of
forwarding the jobs into the cloud side periodically when a
node cannot accept that job. In our method, the distribution
model can detect and monitor the status of all possible fog
nodes, then place that job into them instead of forwarding
the job into the cloud side. However, our method FJTS in
fog resource network is higher than FCFS by 12% as shown
in Fig.6. The reason for this is our method utilizes the whole
system’s capabilities. The idle devices are considered in our
method, and the algorithm will not offload jobs into the
cloud unless it cannot be implemented in any possible fog
nodes.

5. Conclusion

In this paper, we introduce a tradeoff method that can
realize magnificent execution time with power consumption.
To solve the previous issue, we built two algorithms that
can utilize all fog resources in the system and do the work
close to the IoT devices. The experimental results
demonstrate that there is a reduction in the execution time
by 20% while the power consumption in cloud server by
18%. However, the power consumption in fog resources has
increased by 12%. We anticipate enhancing the job
scheduling in fog computing by implementing the jobs in
parallel for future work. The fog nodes are heterogeneous,
so it is possible to detect multi-core CPUs in fog
computing.

References
[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli,

“Fog computing and its role in the internet of
things,” Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pp. 13-16, 2012.

[2] Mckinsy Global Institute website “The Internet of Things:
Mapping The Value Beyond The Hype,” Accessed 5.1, 2021.
[Online]. Available: https://www.mckinsey.com

[3] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. Choo, and M. Dlodlo,
“From cloud to fog computing: A review and a conceptual live
VM migration framework,” IEEE Access, vol. 5, pp. 8284–
8300, 2017

[4] K. Kambatla, G. Kollias, V. Kumar, A. Grama, “Trends in big
data analytics,” Journal of Parallel and Distributed Computing,
vol.74, no.7, pp. 2561-2573, 2014.

Fig. 5 Energy consumption in cloud server

Fig. 6 Energy consumption in fog nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021

142

[5] F. A. Kraemer, A. E. Braten, N. Tamkittikhun and D. Palma,
“Fog Computing in Healthcare–A Review and Discussion,”
in IEEE Access, vol. 5, pp. 9206-9222, 2017.

[6] J. C. Jiang, B. Kantarci, S. Oktug, and T. Soyata, “Federated
learning in smart city sensing: Challenges and opportunities,”
Sensors, vol. 20, no. 21, p. 6230, 2020.

[7] J. Xu and F. Wang, “Federated learning for healthcare
informatics,” arXiv preprint arXiv:1911.06270, 2019.

 [8] R. Kolcun, D. Boyle, and J. McCann, “Optimal processing
node discovery algorithm for distributed computing in IoT,”
in The 5th International Conference on the Internet of Things
pp.7279, 2015.

[9] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X.
Mavromoustakis, G. Mastorakis, “Drop computing: Ad-hoc
dynamic collaborative computing,” Future Gener. Comput.
Syst., vol. 92, pp. 889-899, Mar. 2017.

[10] C. Fricker, F. Guillemin, P. Robert, and G. Thompson,
“Analysis of an offloading scheme for data centers in the
framework of fog computing,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 4, p. 16, 2016.

[11] X. Guo, R. Singh, T. Zhao, Z. Niu, “An index based task
assignment policy for achieving optimal power-delay tradeoff
in edge cloud systems,” Proc. IEEE Int. Conf. Commun. (ICC),
pp. 1-7, May 2016.

[12] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and

C.-S. Yang, “A hyper-heuristic scheduling algorithm for
cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 2,
pp. 236–250, 2014.

[13] N. Patil and D. Aeloor, “A review-different scheduling
algorithms in cloud computing environment,” 11th
International Conference on, IEEE, pp. 182–185, 2017.

[14] N. Patil and D. Aeloor, “A review-different scheduling
algorithms in cloud computing environment,” 11th
International Conference on, IEEE, 2017, pp. 182–185, 2017.

[15] I. Lera, C. Guerrero, and C. Juiz, “Comparing centrality
indices for network usage optimization of data placement
policies in fog devices,” in Proc. 3rd Int. Conf. Fog Mobile
Edge Comput. (FMEC), vol. 1, no. 1, pp. 115–122, 2018.

[16] S. Agarwal, S. Yadav, and A. K. Yadav, “An efficient
architecture and algorithm for resource provisioning in fog
computing,” Int. J. Inf. Eng. Electron. Bus., vol. 8, no. 1, pp.
48–61, 2016.

[17] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, M.
Aazam, “An architecture of IoT service delegation and
resource allocation based on collaboration between fog and
cloud computing,” Mobile Inf. Syst., vol. 2016, Aug. 2016.

[18] T. Mathew, K. C. Sekaran, and J. Jose, “Study and analysis
of various task scheduling algorithms in the cloud computing
environment,” in Advances in Computing, Communications
and Informatics (ICACCI), International Conference on. IEEE,
pp. 658–664, 2014.

[19] N. Eshraghi and B. Liang, “Joint offloading decision and
resource allocation with uncertain task computing
requirement,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, pp. 1414–1422, 2019.

Anwar Alghamdi is a lecturer in

faculty of computer and information
technology at Al-Baha University. He
obtained the BSc degree in computer
science from King Saud University,

Riyadh, Saudi Arabia in 2008. He
obtained the MSc degree in computer

science form Gannon University, USA in 2015. Currently,
he is pursuing a Ph.D. in the field of computer science at
King Abdulaiziz University. His research interests are in the
fields of fog computing, Internet of Things, and big data.

Ahmed Alzahrani received the B.S.
degree in computer science from
King Abdul Aziz University in 2000,
and the M.S. degrees in information
security from University of
Glamorgan, Cardiff, UK in 2005.

He received the Ph.D. degree in
computer networks from University of

Bradford, UK in 2009. He is currently an
Associate Professor with the Computer Science Department,
and the current Vice Dean of Deanship of Graduate Studies
for academic affairs, King Abdul Aziz University. His
current research interests include computer networs,
networks security, quality of service routing, quantum
computing, deep learning, big data, in-memory computing,
and high performance computing.

Vijey Thayananthan: is a Professor at
Computer Science Department in the
King Abdulaziz University, Jeddah,
KSA. He obtained his Ph.D. in
Engineering (Digital communication
engineering) from Department of

Communication Systems, University
of Lancaster, UK, in 1998. Since 2000, he

had been working as a Research engineer and senior
algorithm development engineer in Advantech Ltd,
Southampton University Science Park, UK and Amfax Ltd,
UK respectively. His research interests include wireless
communication algorithm design and mobile
communication analysis, security management of
communication network and big data, computer security
and wireless sensor network. He has been a full-time
member of the Institution of Engineering Technology (IET),
UK since 2005.

