• 제목/요약/키워드: Focusing wave

검색결과 336건 처리시간 0.021초

파랑집중에 의한 다방향 극한파 생성의 효율성에 관한 실험적 연구 (An Experimental Study on Wave Focusing Efficiency in the Generation of Directional Extreme Waves)

  • 홍기용;류슈쉐;양찬규
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.1-6
    • /
    • 2002
  • Extreme waves are generated in a model basin based on directional wave focusing. The targeted wave field is described by double summation method and it is applied to serpent-type wavemaker system. The extreme crest amplitude at a designed location is obtained by syncronizing the phases and focusing the directions of wave components. Two distinguished spectrums of constant wave amplitude and constant wave steepness are adapted to describe the frequency distribution of component waves. The surface profile of generated wave packets is measured by wave guage array and the effects of dominant spectral parameters governing extreme wave characteristics are investigated. It is found that frequency bandwidth, center frequency, shape of frequency spectrum and directional range play a significant role in the wave focusing. In particular, the directional effect significantly enhances the wave focusing efficiency.

약한 충격파의 포커싱 현상에 관한 수치해석적 연구 (A Computational Study of the Focusing Phenomenon of Weak Shock Wave)

  • 권용훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

다방향 극한파 생성의 이론적 연구 (Theoretical Study on the Generation of Directional Extreme Waves)

  • 홍기용;류슈쉐;홍석원
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.38-48
    • /
    • 2002
  • 파랑집중 이론에 기초하여 모형시험수조에서 다방향 극한파를 생성하는 연구를 수행하였다. 파랑의 집중도에 대한 파향 범위, 주파수 폭, 중심 주파수 등의 영향을 고찰하였다. 등파고와 등기 울기 스펙트럼 모델에 의한 결과를 서로 비교하였으며, Boussinesq 방정식과 유한요소법에 기초한 수치해와 이론해를 또한 서로 비교하였다. 효율적인 파랑집중을 위해서는 파향과 주파수 모두를 효과적으로 제어하는 것이 필수적이다. 파랑집중도는 중심주파수 보다는 주파수 폭에 좌우되며, 동일한 조건하에서 두 스펙트럼 모델은 동등한 정도의 파랑집중 효율을 나타낸다.

다방향 파랑집중에 의한 쇄파의 파형특성 연구 (Evolution of Surface Profiles of Breaking Waves Generated by Directional Wave Focusing)

  • 홍기용;최학선
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2002
  • 방향 및 주파수 성분을 포함하는 파랑집중에 의해 다방향 쇄파를 생성하였으며, 등기울기 및 등진폭 스펙트럼 모델을 적용하였다. 생성된 다방향 쇄파는 초기쇄파, 단일쇄파 다중쇄파로 구분된다. 다방향 쇄파의 특성을 파정 기울기 및 비대칭성으로 정의되는 파형인자들의 함수로 고찰하였다. 또한 파랑집중의 효율성 관점에서 쇄파 파랑특성의 전개를 분석하였다. 파정 전면 기울기 및 연직 비대칭성은 쇄파과정에 영향을 미치는 중요한 인자이나, 파정후면 기울기 및 수평 비대칭성은 쇄파 과정에서 거의 상수 값을 갖는다. 방향 성분의 중첩은 파랑집중의 효율성을 크게 강화하며, 이는 다방향파의 쇄파 특성이 일방향파의 쇄파 특성과 상이함을 나타낸다.

  • PDF

서펜트형 조파기에 의해 생성된 다방향 쇄파의 파형 전개 (Evolution of Wave Profiles in Directional Breaking Generated by Serpent-type Wavemaker)

  • 홍기용;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.264-269
    • /
    • 2002
  • The wave profiles of directional breaking waves are investigated experimentally in a directional wave basin. The directional breaking waves are generated by component wave focusing both in direction and frequency based on constant wave steepness and constant wave amplitude spectrum models. the profile parameters of wave crest steepness and asymmetry are adapted to analyze the evolution of breaking ware characteristics in a view of focusing efficiency. The generated breaking waves are classified into the incipient, single and multi breaking waves.

  • PDF

초음파 영상 시스템에서 합성 집속을 위한 새로운 구면파 발생 방법 (New Circular Wave Generation Method for Synthetic Focusing in Ultrasonic Imaging Systems)

  • 안영복
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.798-802
    • /
    • 2007
  • The synthetic focusing in the ultrasonic imaging systems has been formed in the way that one element transmits a circular wave and receives an echo signal. The amplitude of the signal transmitted from one element is too small to propagate a long distance so that the SNR(Signal to Noise Ratio) is very low in an image obtained by the synthetic focusing. To solve this problem, a defocusing method which uses several elements has been proposed. In this method, the SNR is improved due to using several elements to transmit the circular wave. But if the number of transmitting elements increases, the phase distortion is severe in the defocusing method. In this paper, we propose a new method that can generate a circular wave using a lot of elements without phase distortion. At first, we generate limited plane waves with different propagation angles and then superpose them to make a circular wave. We show that the circular wave can be used to improve SNR in the real-time 3D ultrasonic imaging as well as the synthetic focusing through computer simulation and experiments.

Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

  • Sung, Jin Woo;Kim, Young H.
    • 비파괴검사학회지
    • /
    • 제33권3호
    • /
    • pp.270-275
    • /
    • 2013
  • In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

파랑에너지 집적 및 연안해역 제어를 위한 해저구조물의 설계 (Design of a Submerged Coastal Structure for Concentration of Wave Energy and Control of a Coastal Area)

  • 이중우;한스 크록
    • 한국항만학회지
    • /
    • 제8권2호
    • /
    • pp.37-56
    • /
    • 1994
  • The effects of wave energy focusing by a submerged berm type of structure is examined. The fundamental idea is based on the phenomenon of refraction by a lens-shaped crescent structure which results in the focusing of wave energy on the center line of the structure. The shape of the submerged structure is a complex curve combining circular with elliptical elements. Based on the design procedure, a special configuration of structure(termed herein as a triple crescent structure) is introduced. Next, some hydraulic model tests are performed to confirm the wave focusing effect in laboratory. In addition, in order to interpret the wave focusing performance behind the structure, a numerical procedure by the hybrid element method is used on the basis of the conventional mild slope equation but modified and extended to allow for steeper bottom slopes and higher curvature. The modified refraction and diffraction provide additional mechanism for wave height amplification and the maximum amplification for triple crescent structure is presented. It also allows for the possibility of wave energy scattering with the change of the incident wave direction. Comparisons with previous theoretical results involving a submerged crescent shape structure are described.

  • PDF

Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석 (Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator)

  • 이영기;권용훈;신현동;김희동;청목준지
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산 (Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes)

  • 홍기용;에스똘히오메자
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.