• Title/Summary/Keyword: Focusing actuator

Search Result 83, Processing Time 0.022 seconds

Robust Servo Control of High Speed Optical Pickups (고속 광 픽업 장치의 강인 서보 제어)

  • 임승철;정태영
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.533-541
    • /
    • 1998
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD ROM drives. To this end, improvement of their optical pickup structure and control is recognized the very challenging issue. In this paper, the pickup is first analytically modelled in a plane to describe its coupled auto-focusing and auto-tracking motions. Subsequently, the model is linearized and combined with actuator dynamics for the auto-focusing system. With its unmeasurable parameters being estimated based on experimental data, an approximate I-DOF linear model is obtained neglecting the coupling term. To design the high speed and robust positional servo controller realistic design specifications are addressed, and H control method is employed based on the approximate model. Finally, taking the pickup in a commerical high speed CD ROM drive as an example performance of the designed controller is verified through realtime experiments.

  • PDF

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.

Variable-focus Liquid Lens Based on a Laterally-integrated Thermopneumatic Actuator

  • Lee, June Kyoo;Park, Kyung-Woo;Lim, Geunbae;Kim, Hak-Rin;Kong, Seong Ho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • We report a focal-length tunable liquid lens based on thermopneumatically driven fluidic pressure. The fluidic pressure is generated by deformation of an elastomeric diaphragm induced by thermopneumaticity from a laterally integrated microheater sealed within an air chamber. The pressure is transmitted by a confined liquid to a lens diaphragm through an internal fluid channel. The liquid filling under the lens diaphragm functions as a liquid lens for dynamic focusing with properties depending on the curvature of the deformed diaphragm. The diaphragm area of the air chamber is designed five times larger than that of the lens cavity to yield high focal-length tunability by amplified deflection of the lens diaphragm. With our method, we achieved excellent focal-length tunability from infinity (without an input current) to 4 mm (with an input current of 12 mA) with a lens aperture diameter of 2 mm.

Analysis of Low-Profile Piezoelectric Butterfly Linear Motor using 3D Laser Vibrometer

  • Lee, Won-Hee;Kang, Chong-Yun;Paik, Dong-Soo;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.325-325
    • /
    • 2010
  • Piezoelectric linear motors have been widely studied for auto focusing devices of digital cameras and cellular phones due to their simple structure. In this paper, we confirmed that novel piezoelectric butterfly linear motor was fabricated and its dynamic properties were analyzed. The piezoelectric transducer (having size $9{\times}8{\times}1\;mm^3$) is composed of an elastic plate, which includes a tip for energy transfer and two fixing protrusions for fixture, and two piezoelectric ceramics. The butterfly linear motor has been designed and optimized using A TILA simulation program. The superposed motion is an elliptical vibration on the tip. The actual movement of the manufactured actuator was confirmed by a 3D laser dopier vibrometer and compared with the simulation results. The results of numerical study and experimental investigation will be used for the future optimization of the actuator and the realization of the advanced ultrasonic motor.

  • PDF

A study on fine actuating stage for autofocus by using flexure-hinge type lever mechanism (탄성 힌지 타입 레버 메커니즘을 이용한 자동 초점 조절 미세구동장치에 대한 연구)

  • Lee J.S.;Hong S.I.;Kim H.S.;Jang H.K.;Lee K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.665-666
    • /
    • 2006
  • In precision laser microfabrication, focusing is essential to acquire good machining precision and uniform machining quality. If it does not perform, laser machining cannot be realized. So, confocal scanning method with high depth resolution is used for focus detection technique. This paper is concerned with a procedure for design, analysis and performance test of an autofocus fine actuating stage, which is composed of flexure-hinge type lever mechanism and piezoelectric actuator. Through series of analytical design, the stage is simplified as a rigid bodies(lever and main body) and springs(flexure hinges). The simplified model was applied to determine the dimension of flexure hinges and lever. After structural analysis confirmed design requirement, an actual stage was made and verified through an experiment on the static and dynamic characteristics(maximum stroke and 1st natural frequency). The fabricated stage was satisfied with the design requirement.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi Jin-Young;Lee Kwang-Hyun;Lee Jae-Sung;Kim Sang-Hoon;Yang Hyunseok;park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.229-234
    • /
    • 2005
  • A novel method to measure the interaction movement, focusing direction and tracking direction in an optical pick-up, is proposed and the decoupling control for it is discussed. First, the basic principle of the coupline analysis method using back electromotive farce is introduced. Second, the interaction analysis between focusing direction and tracking direction fur commercial slim type actuator is performed using the proposed method. Finally, the coupling analysis and decoupling control for the slim type optical pick-up are discussed. From the brief simulation, we shows that the effectiveness and validity of the proposed method.

  • PDF

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

A Mathematical Approach for Modal Frequency Analysis in Actuators (운동방정식 유도에 의한 액추에이터 모드 주파수 분석)

  • Lee, Kyung Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.537-545
    • /
    • 2013
  • In this paper, the vibration for actuators having lens module, confined to lateral and torsional directions of suspensions, is described by mathematically analyzing its suspension configuration and motion. In order to prove the accuracy of this result, it is compared to a finite element analysis. Also it is shown that modal frequencies can be modified by changing design parameters in mathematical motion expressions.

Feedforward Active Shock Response Control of a Flexible Beam (유연빔의 피드포워드 능동 충격응답 제어)

  • Pyo, Sang-Ho;Lee, Young-Sup;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.213-216
    • /
    • 2005
  • Active control method is applied to a flexible beam excited by a shock impulse by focusing on reducing the residual vibrations after the shock input. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using an error sensor and adaptive algorithm. Both numerical simulation and experimental result show a promising possibility of applying to a practical problem.

  • PDF

MECHANICAL VIBRATIONS IN OPTICLA DISK DRIVES (광디스크 드라이브의 최근 동향과 기계적 진동의 영향)

  • 이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.218-226
    • /
    • 1998
  • Recent trends and the effect of mechanical vibrations in optical disk drives are reviewed in this paper. The Nation from CD drives to high density DVD drives and the development of writable optical disk drives require tighter mechanical tolerance. The demand for faster access time and higher data transfer rate also leads to critical mechanical problems to limit the tracking and focusing servo performance. The current mechanical issues to limit the performance of the drives and various technologies to overcome the mechanical problems are introduced. Vibrations of disk-spindle system, actuator and suspension designs of the optical pick-up, and general mechanical designs for the fast and stable access mechanism are considered.

  • PDF