• 제목/요약/키워드: Focused Ultrasound

검색결과 146건 처리시간 0.024초

체외강력집속초음파치료 (Extracorporeal High Intensity Focused Ultrasound Therapy)

  • 한상석
    • 대한골관절종양학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2005
  • 의학의 발달과 더불어 종양에 대한 국소치료는 광범위근치술(extended radical surgery) 로부터 기능보존술(function preserving surgery)로 발달하고 이것은 다시 최소침습술(minimal-invasive surgery)로 발전하여 왔다. 그러나 최근 들어서는 기술의 혁신적인 진보로 비침습적수술법(non-invasive surgery)이 개발되어 감마나이프(gamma knife), 사이버나이프(cyber knife), 및 하이푸나이프(HIFU knife) 등이 출현하게 되었다. 본 논문에서는 이들 중 하이푸나이프를 이용한 체외강력집속초음파치료(extracorporeal high intensity focused ultrasound therapy)에 대하여 발달사, 치료기 구조 및 치료과정, 조직학적 변화와 기전, 임상적용, 장단점 및 전망 등을 살펴보고자 한다.

  • PDF

미용 치료 헬스케어를 위한 고강도 집속 초음파 장치 개발 연구 (A Study on the Development of High-intensity focused Ultrasound Device for the Beauty Treatment Health Care)

  • 이우철;고윤석
    • 한국전자통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.1259-1264
    • /
    • 2016
  • 초음파 치료는 회복속도가 빠르고 안전하다는 이유로 피부거상치료와 관련된 미용분야에서 큰 관심을 받고 있다. 본 연구에서는 미용치료를 위한 고강도 집속 초음파 장치의 출력회로를 개발하였다, 고강도 집속 초음파 시스템의 미용치료분야에 대한 적용 가능성을 확인하기 위해 수중 청음기를 이용하여 3 차원 초음파 강도 에너지를 측정 분석하였다, 고강도 집속 초음파장치에 의해 미용 치료에 유용함을 확인하였다.

HIFU: 현황 및 기술적 동향 (High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends)

  • 서종범
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권2E호
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Study on Changes in Shape of Denatured Area in Skull-mimicking Materials Using Focused Ultrasound Sonication

  • Min, JeongHwa;Kim, JuYoung;Jung, HyunDu;Kim, JaeYoung;Noh, SiCheol;Choi, HeungHo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권1호
    • /
    • pp.28-34
    • /
    • 2014
  • Recently, ultrasound therapy has become a new and effective treatment for many brain diseases. Therefore, skull-mimicking phantoms have been developed to simulate the skull and brain tissue of a human and allow further research into ultrasound therapy. In this study, the suitability of various skull-mimicking materials(HDPE, POM C, Acrylic) for studies of brain-tumor treatments was evaluated using focused ultrasound. The acoustic properties of three synthetic resins were measured. The skull-mimicking materials were then combined with an egg white phantom to observe the differences in the ultrasound beam distortion according to the type of material. High-intensity polyethylene was found to be suitable as a skull-mimicking phantom because it had acoustic properties and a denatured-area shape that was close to those of the skull,. In this study, a skull-mimicking phantom with a multi-layer structure was produced after evaluating several skull-mimicking materials. This made it possible to predict the denaturation in a skull in relation to focused ultrasound. The development of a therapeutic protocol for a range of brain diseases will be useful in the future.

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • 제33권44호
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.

Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening

  • Lee, Eun Jung;Fomenko, Anton;Lozano, Andres M.
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권1호
    • /
    • pp.10-26
    • /
    • 2019
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.

Characteristics of Focused Ultrasound Mediated Blood-Brain Barrier Opening in Magnetic Resonance Images

  • Kyung Won Chang;Seung Woo Hong;Won Seok Chang;Hyun Ho Jung;Jin Woo Chang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권2호
    • /
    • pp.172-182
    • /
    • 2023
  • Objective : The blood-brain barrier (BBB) is an obstacle for molecules to pass through from blood to the brain. Focused ultrasound is a new method which temporarily opens the BBB, which makes pharmaceutical delivery or removal of neurodegenerative proteins possible. This study was demonstrated to review our BBB opening procedure with magnetic resonance guided images and find specific patterns in the BBB opening. Methods : In this study, we reviewed the procedures and results of two clinical studies on BBB opening using focused ultrasound regarding its safety and clinical efficacy. Magnetic resonance images were also reviewed to discover any specific findings. Results : Two clinical trials showed clinical benefits. All clinical trials demonstrated safe BBB opening, with no specific side effects. Magnetic resonance imaging showed temporary T1 contrast enhancement in the sonication area, verifying the BBB opening. Several low-signal intensity spots were observed in the T2 susceptibility-weighted angiography images, which were also reversible and temporary. Although these spots can be considered as microbleeding, evidence suggests these are not ordinary microbleeding but an indicator for adequate BBB opening. Conclusion : Magnetic resonance images proved safe and efficient BBB opening in humans, using focused ultrasound.

집속초음파 자극기의 성능평가를 위한 팬텀 내부온도 측정 (Measurement of Internal Temperature Distribution for the Evaluation of Focused Ultrasound (FUS) Stimulation Devices)

  • 도일;조주형;김성목;백경민;김용태;박승민
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권3호
    • /
    • pp.147-152
    • /
    • 2022
  • This research is to measure real-time temperature distribution inside a tissue-mimicking phantom for the safety and effectiveness evaluations of focused ultrasound (FUS) device capable of linear scanning stimulation. Since the focusing area of the FUS stimulation device is smaller than diameter of conventional thermal probe and keeps moving, it is impossible to monitor temperature distribution inside the phantom. By using the phantom with a thin film temperature sensor array inserted, real-time temperature change caused by the FUS device was measured. The translation of the measured temperature peak was also tracked successfully. The present phantom had been experimentally proven to be applicable to validate the performance and safety of the therapeutic ultrasound devices.

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제29권3E호
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

CTO 괴사를 위한 고강도 집속 초음파의 음향학적 특성 (Acoustic Characteristics of High Intensity Focused Ultrasound for Necrosis of CTO)

  • 박찬희;정상화
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.481-488
    • /
    • 2015
  • It is difficult to see a therapeutic effect from cardiovascular disease treatment methods in the case of a hardened chronic total occlusion (CTO), owing to the calcification of the deposition materials. However, lesion cells, such as CTOs, can be selectively necrotized without affecting the normal tissue using high-intensity ultrasound focused on one point. In this study, a phantom CTO was necrotized by a high-intensity focused ultrasound (HIFU) energy system, and the acoustic characteristics in the focal region were analyzed. An experimental HIFU device was constructed to discover the appropriate conditions for the necrosis of a phantom CTO. The transfer characteristics of the ultrasound changed in the focal region by the density difference of the phantom CTO. These changes were acoustically analyzed to choose the available frequency band for each density. On-off temperature control in the focal region was applied to prevent rapid temperature rises, which would otherwise affect normal tissue.