• Title/Summary/Keyword: Focus Size

Search Result 981, Processing Time 0.029 seconds

A Study on Depth of Focus of Particle in Digital Particle Holography (디지털 입자 홀로그래피의 입자 초점 심도에 관한 연구)

  • Yang, Yan;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, the effect of important parameters such as the pixel size and number of a CCD, the object distance, the wavelength of laser, and the particle diameter on the depth of focus in digital in-line particle holography were investigated. The depth of focus in several different cases was calculated using simulation holograms and detailed description of the depth of focus in digital particle holography was presented. The depth of focus is directly proportional to the object distance and the particle size. With the increase of the wavelength of laser, the depth of focus is decreased. The depth of focus is also inversely proportional to the pixel size and number of a CCD. Using the data of depth of focus from simulation holograms and a data-fitting software, we obtained the prediction equations of depth of focus for typical CCD cameras. Finally, the prediction equations of depth of focus in digital particle holography were verified by investigating real holograms of the calibration target in different cases and satisfied agreement between measured values and predicted values was confirmed.

  • PDF

Quantitative Analysis of Spatial Resolution for the Influence of the Focus Size and Digital Image Post-Processing on the Computed Radiography (CR(Computed Radiography)에서 초점 크기와 디지털영상후처리에 따른 공간분해능의 정량적 분석)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of the present study was to carry out quantitative analysis of spatial resolution for the influence of the focus size and digital image post-processing on the Computed Radiography (CR). The modulation transfer functions of an edge measuring method (MTF) was used for the evaluation of the spatial resolution. The focus size of X-ray tube was used the small focus (0.6 mm) and the large focus (1.2 mm). We evaluated the 50% and 10% of MTF for the enhancement of edge and contrast by using multi-scale image contrast amplification (MUSICA) in digital image post-processing. As a results, the edge enhancement than the contrast enhancement were significantly higher the spatial resolution of MTF 50% in all focus. Also the spatial resolution of the obtained images in a large focus were improved by digital image processing. In conclusion, the results of this study should serve as a basic data for obtain the high resolution clinical images, such as skeletal and chest images on the CR.

Plus-size Women and Appearance Management with a Focus on Clothing -Grounded Theory Based Exploratory Study- (근거이론에 기초한 플러스 사이즈 여성 소비자의 의류를 중심으로 한 외모관리에 관한 탐색적 연구)

  • Yu, Haekyung;Ko, Sunyoung;Kim, Chanju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.3
    • /
    • pp.306-319
    • /
    • 2013
  • This study explores various issues of appearance management behavior for plus-size women in Korea with a focus on clothing. In-depth interviews and focused group interviews were conducted with 24 plus-size women. The interviews were recorded and the transcripts were analyzed based on grounded theory. Discomfort was the main phenomenon involving the experience of plus-size women related to appearance management. Psychological as well as physiological/physical discomfort, unmet needs (regarding clothing) and inconvenient shopping experiences were frequently mentioned. Causal conditions for discomfort were obesity, social stigma, and an underdeveloped clothing market for plus-size consumers. Interviewees developed strategies to cope with discomfort (suppressing clothing need, loss of interest in clothing, diversion from clothing needs, sole focus on physical comfort, dress-up and increase in shopping channels, and change in shopping patterns) that depended on contextual conditions (such as duration of obesity and attitudes of people) close to the interviewees. The discomfort of interviewees decreased or continued depending on if they became ambivalent about their obese condition, lost weight, or utilized plus-size specialty stores.

Optimization of optical focus of composition optical system by OSLO (합성광학계의 OSLO를 통한 optical focus의 최적화)

  • Kim, Dae Nyoun;Choi, Gei Hun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • This study was to calculate spot size, focus shift and optical focus by use of OSLO when 3 wavelength, ${\omega}{\upsilon}_1=0.588{\mu}$, ${\omega}{\upsilon}_2=0.486{\mu}$ and ${\omega}{\upsilon}_3=0.656{\mu}$ in composite lens optics system & ocular optical system were respectively here, Entrance Beam Radius(mm) 1 mm, Field angle(deg) 5.7296e-0.5 mm, Image Aperture 0.053055 mm, Exit Aperture 0.903711 mm, Reflective focal length 25.181544 mm, Petzval radius -19.21839 mm, n = 1.523. It was found that a range of spot size was 0.002 mm~0.07 mm when a range of back curvature radius was 1 mm~30 mm, and 0.0005 mm~0.002 mm when of it more than 50 mm. Focus shift, 50 mm a range 3 kinds of lens was small, and it saw that of all tendency was high up to 1 mm~15 mm and up to 25 mm beyond that limits, it was going down and then going up again, optical focus 100 mm lens was best and the value when optimization with this lens was $60{\pm}1mm$.

  • PDF

Performance Evaluation of Smartphone Camera App with Multi-Focus Shooting and Focus Post-processing Functions (다초점 촬영과 초점후처리 기능을 가진 스마트폰 카메라 앱의 성능평가)

  • Chae-Won Park;Kyung-Mi Kim;Song-Yeon Yoo;Yu-Jin Kim;Kitae Hwang;In-Hwang Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2024
  • In this paper, we validate the practicality of the OnePIC app implemented in the previous study by analyzing the execution and storage performance. The OnePIC app is a camera app that allows you to get a photo with a desired focus after taking photos focused on various places. To evaluate performance, we analyzed distance focus shooting time and object focus shooting time in detail. The performance evaluation was measured on actual smartphone. Distance focus shooting time for 5 photos was around 0.84 seconds, the object detection time was around 0.19 seconds regardless of the number of objects and object focus shooting time for 5 photos was around 4.84 seconds. When we compared the size of a single All-in-JPEG file that stores multi-focus photos to the size of the JPEG files stored individually, there was no significant benefit in storage space because the All-in-JPEG file size was subtly reduced. However, All-in-JPEG has the great advantage of managing multi-focus photos. Finally, we conclude that the OnePIC app is practical in terms of shooting time, photo storage size, and management.

Lens Position Error Compensated Fast Auto-focus Algorithm in Mobile Phone Camera Using VCM (VCM을 이용한 휴대폰 카메라에서의 렌즈 위치 오차 보상 고속 자동 초점 알고리즘)

  • Han Chan-Ho;Kim Tae-Kyu;Kwon Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.585-594
    • /
    • 2006
  • Due to the size limit, the voice coil motor (VCM) is adopted in most of the mobile phone camera to control auto-focus instead of step motor. The optical system using the VCM has the property that the focus values are varying even though the same current is induced. It means that an error of the lens position was taken placed due to the characteristics of the VCM. In this paper, a algorithm was proposed to compensate the lens position error using the step size and the search count of each stage. In the proposed algorithm -7 step middle searching stage is inserted the conventional searching algorithm for the fast auto-focus searching and the final searing step size was set to +1 for the precise focus control, respectively. In the experimental results, the focus values was found more fast in the proposed algorithm than the conventional. And more the image quality by the proposed algorithm was superior to that of the conventional.

  • PDF

Determination of In-focus Criteria In Image Processing Method for Particle Size Measurement (입경측정을 위한 영상처리기법에서 입자 초점면 존재 판단 기준의 설정)

  • Koh, Kwang Uoong;Kim, Joo Youn;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.398-407
    • /
    • 1999
  • In the present image processing technique, the concept of the gradient indicator(GI) has been introduced to find out the depth-of-field in sizing large particles ranging from $30{\mu}m$ to $30{\mu}m$ where using of the concept of the normalized contrast value(VC) is not appropriate. The gradient indicator is defined as the ratio of the local value to the maximum possible value of the gray-level gradient in an image frame. The gradient indicator decreases with the increases of the particle size and the distance from the exact focal plane. A particle is considered to be in focus when the value of the gradient indicator at its image boundary stays above a critical value. This critical gradient indicator($GI_{critical}$) is defined as the maximum gradient indicator($GI_{max}$) subtracted by a constant ${\Delta}GI$ which is to account for the particle-size effect. In the present ca.so, the value of ${\Delta}GI$ was set to 0.28 to keep the standard deviation of the measured particles mostly within 0.1. It was also confirmed that, to find the depth-of-field for small particles(${\leq}30{\mu}m$) with the same measurement accuracy, tho concept of the critical normalized contrast($VC_{critical}$) is applicable with 85% of the maximum normalized contrast value($VC_{max}$). Finally, the depth-of-field was checked for the size range between $10{\mu}m$ and $300{\mu}m$ when the both in-focus criteria ($GI_{critical}$ and $VC_{critical}$) were adopted. The change of the depth-of-field with the particle size shows good linearity in both the VC-applicable and the GI-applicable ranges with a reasonable accuracy.

Influences of Pump Spot Radius and Depth of Focus on the Thermal Effect of Tm:YAP Crystal

  • Zhang, Hongliang;Wen, Ya;Zhang, Lin;Fan, Zhen;Liu, Jinge;Wu, Chunting
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.458-465
    • /
    • 2019
  • The thermal effect and the light output of a laser crystal under different pumping depths were reported., Based on the thermal model of a single-ended pumped Tm:YAP crystal, the thermal stress coupled model used Comsol to theoretically calculate the effect of changing the pump spot size and pump depth on crystal heat distribution and stress distribution. The experimental results showed that the laser output power first increased and then decreased with increasing pump spot size. As the depth of focus increased, the laser output power first increased and then decreased. The experimental results were consistent with the theoretical simulation results. The theory of pump spot radius and depth of focus in this paper provided an effective simulation method for mitigating thermal effects, and provided theoretical supports for laser crystals to obtain higher laser output power.

Image Noise Removal using State Estimation Filter (상태 추정 필터를 이용한 영상 잡음 제거)

  • Jang, Hoon-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • Acquiring high-quality images in control and measurement systems is one of the important factors. Among image acquisition technologies, SFF (Shape from Focus) is a technology for recovering a 3D shape by acquiring 2D images with different focus levels by moving an object at a predetermined step size along the optical axis. For SFF, when an object is moved at a constant step size, mechanical vibration, referred as jitter noise, occurs in each step along the optical axis. In this paper, a new state estimation filter is designed and applied for reducing the jitter noise. For the application of the proposed method, the jitter noise and focus curves are modeled as Gaussian function. Experimental results demonstrate the effectiveness of proposed method.

An Automatic Focusing Method Using Establishment of Step Size from Optical Axis Interval (광학축 간격의 스텝크기 설정을 통한 오토포커싱 방법)

  • Kim, Gyung Bum;Moon, Soon Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this paper, an automatic focusing method has been proposed for speedy and reliable measurement and inspection in industry. It is very difficult to determine focusing step size and moving direction in one camera autofocusing. The proposed method can improve speed and accuracy of focusing by using the optical axis interval of two cameras, which is automatically set up as focusing step size. Also, it can determine moving direction from focus value comparisons of two cameras, and then solve ambiguity of one camera focusing. Its performance is verified by experiments. It is expected that it can apply to optical system for measurement and inspection in industry fields.