• 제목/요약/키워드: Foam cell

검색결과 258건 처리시간 0.029초

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

알루미늄 소재의 미세 기공 크기가 압축 및 굽힘 강도에 미치는 영향 (The Effects of Cell Sizes on Compression and Bending Strength of Aluminum Material)

  • 전용필;강충길
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.701-709
    • /
    • 2002
  • Aluminium foam material is highly porous material, which has the complicated cellular structure defined by randomly distributed pores in metallic matrix. This structure gives the characteristic properties which cannot be achieved by any other conventional processes. As the properties of aluminium foam material significantly depend on its porosity, a desired profile of properties can be tailored by changing the foam density. But various defects lead to undesirable effects on the mechanical properties. Mechanical properties are dependent on cell sizes and aspect ratios. Therefore, this paper presents the effects of various processing parameters of various parameters on the mechanical properties. For the sake of this, combined stirring was used to fabricate aluminum foam materials by the parameters. Compression and bending tests were performed to investigate the effects of cell sizes and aspect ratios on the mechanical properties.

닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석 (Numerical Analysis on the compressive behavior of closed-cell Al foam)

  • 전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

셀 가스분석을 이용한 우레탄폼의 열전도도 장기변화 예측 (The Prediction of Time-Dependent Thermal Conductivity of Polyurethane Foam with Cell Gas Analysis)

  • 이효진;전종한;김진석;이진복;강남구
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1367-1372
    • /
    • 2009
  • A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.

  • PDF

CRUSH BEHAVIOR OF METALLIC FOAMS FOR PASSENGER CAR DESIGN

  • Cheon, S.S.;Meguid, S.A.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.47-53
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the crush behaviour of a closed cell metallic foam. The unit cell which captures the main geometrical features of the metallic foam considered was used to simulate crush behaviour in metallic foams. Both analytical using limit analysis and numerical using the finite element method were used to study the collapse behaviour of the cell. The analytical crushing stress of the foam was compared with FE results and was found to be in good agreement.

개포형 6063 발포 알루미늄의 압축특성 (Compressive Properties of Open Cell 6063 Aluminium Foam)

  • 부성덕;강복현;김기영
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.36-41
    • /
    • 2007
  • Compressive properties of the open cell 6063 aluminum alloy foams made by the plaster molding process were investigated before and after heat treatment. Loading process was controlled at a displacement rate of 2 mm/min. Compressive strength of 10 PPI foam was the largest of the same density foams. Increase in strength after heat treatment for the bulk material was remark able, however was not for the 6063 aluminum foam. C values were in the range of $0.39{\sim}0.53$ for as cast foams and $0.13{\sim}0.16$ for T6 heat treated foams in the equation of ${sigma}^*_{pl}/{\sigma}_{ys}=C({\rho}/{\rho}_{s})^{1.5}$ and increased with cell size.

블록형 Ni-Cr-Al 분말 다공성 소재의 미세조직 및 인장 변형 거동 (Microstructure and Tensile Deformation Behavior of Ni-Cr-Al Powder Porous Block Material)

  • 김철오;배정석;이기안
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.93-99
    • /
    • 2015
  • This study investigated the microstructure and tensile properties of a recently made block-type Ni-Cr-Al powder porous material. The block-type powder porous material was made by stacking multiple layers of powder porous thin plates with post-processing such as additional compression and sintering. This study used block-type powder porous materials with two different cell sizes: one with an average cell size of $1,200{\mu}m$ (1200 foam) and the other with an average cell size of $3,000{\mu}m$ (3000 foam). The ${\gamma}$-Ni and ${\gamma}^{\prime}-Ni_3Al$ were identified as the main phases of both materials. However, in the case of the 1,200 foam, a ${\beta}$-NiAl phase was additionally observed. The relative density of each block-type powder porous material, with 1200 foam and 3000 foam, was measured to be 5.78% and 2.93%, respectively. Tensile tests were conducted with strain rates of $10^{-2}{\sim}10^{-4}sec^{-1}$. The test result showed that the tensile strength of the 1,200 foam was 6.0~7.1 MPa, and that of 3,000 foam was 3.0~3.3 MPa. The elongation of the 3,000 foam was higher (~9%) than that (~2%) of the 1,200 foam. This study also discussed the deformation behavior of block-type powder porous material through observations of the fracture surface, with the results above.

단열재의 무게변화와 열전도도와의 상관관계에 관한 실험적 연구 (Experimental Study of the Relationship between Weight Variation and Thermal Conductivity in Polyurethane Foam)

  • 이효진
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.241-246
    • /
    • 2015
  • Cellular foamed insulation such as polyurethane foam ages and degrades the thermal conductivity. Aging of foam is a result from the diffusion of gases, initially consisting of $CO_2$ but eventually replaced by air from the environment. The variation of the cell gas content with time is primarily influenced by the increase of thermal conductivity of the cellular foam. The weight of foam also changes as the gas diffuses and exchanges. In this study, a weight measurement method has been proposed to evaluate the effective diffusion coefficients of $CO_2$ and Air, $D_{CO2}=7.08504E-11$ and $D_{air}=4.86086E-12$, respectively and are compared with the gas analysis method.

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.