• Title/Summary/Keyword: Flying Qualities

Search Result 14, Processing Time 0.022 seconds

Flying Qualities from Early Airplanes to the Space Shuttle (비행성(Flying Qualities) 의 발전과정)

  • Kim, H.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.4 no.1
    • /
    • pp.119-129
    • /
    • 1996
  • 이 기술해설은 1989년 7 - 8월호 Journal of Guidance and Control ( Vol. 12, No. 4) 에 실린 William H. Phillips의 "Flying Qualities from Early Airplanes to the Space Shuttle"의 논문을 발췌, 번역한 것이다. 여기서는 비행성 연구에 관한 역사적인 발전과정과 비행성 요구조건의 변천에 대하여 그 내용을 비행성의 영역, 초기의 발전과정, 요구조건에 관한 연구, 지령식 조종계통, 돌풍반응과의 관계, 그리고 비행성의 예측과 양식(format)등으로 구분하여 간단히 소개한다.

  • PDF

A Study on the Efficient Compliance Method for Airworthiness Certification in the field of Flying Qualities of Military Aircraft (군용항공기 비행성 분야의 효율적인 감항인증 입증방법에 대한 고찰)

  • Kang, Myungsoo;Kim, Chong-sup;Koh, GiOk;Lim, Sang-soo;Kim, Byoung soo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.95-108
    • /
    • 2022
  • Airworthiness certification is critical, in ensuring the flight safety of military aircraft for development tests and production operations. The MIL-HDBK-516C, latest airworthiness certification document, handles the field of flying qualities in Chapter 6 (flight technology), and refers to specific chapters of MIL-STD-1797B, which is the specification document for developing military aircraft. Since the MIL-STD-1797B released in 2006 by the U.S. Department of Defense is not disclosed to other countries, the Chapter 6 (flight technology) of MIL-HDBK-516B Expanded, the former certification standards pursuant to flying qualities, has to be applied to military aircraft being developed in the Republic of Korea. However the requirements of Chapter 6 of MIL-HDBK-516B Expanded comprise unclear sentences, because of contents from various development specifications. Also, clarification is needed in that the same requirements have to be verified in different criteria. In this paper, the results of this study present an effective verification method, for acquiring the airworthiness certification in field of flying qualities based on MIL-HDBK-516B Expanded.

Human Factors Aircraft Cockpit Design and Flying Qualities (인간공학적 조종실 설계가 항공기 비행 품질에 미치는 영향)

  • 오제상
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.26-32
    • /
    • 1992
  • 세계적으로 항공기 사고의 통계적 분석에 의하면 항공기 운용자의 인적과실(Human error)로 인한 항공기 사고가 약 70% 이상으로 보고되고 있다. 항공기 운용자의 인적과실에 기인한 요인들 중에서 운용자의 작업량, 작업공간, 작업환경, 인체크기, 인체 생리, 인간 심리 및 습관 등을 항공기 설계단계에서 고려하지 못한 요인이 대부분이다. 일반적으로 항공기 비행품질(Flying qualities)의 영향을 주는 설계분야는 크게 세가지로 항공기 형상(Configuration), 조종체계(Control system)및 조종실 배치(Cockpit layout)로 분류된다. 이들 세가지 설계분야 중에서 조종실의 운용자 인간공학적인 요구 사항을 고려하지 않으면 항공기 운용성 품질중에서 삼분의 일이 감소될 수 있다. 그리고 항공기 개발시에 전담하는 항공기 설계 분야별로 구분하고 그 전담설계 부서들과 인간공학적 조종실 설계 전담 부서가 항공기 비행 품질 및 운용자 인적과실(Human error)에 미치는 영향을 분석하고 인간공학의 중요성을 강조한다. 항공기를 개발할때에 개발자는 그 항공기를 운용하는 운용자의 인체, 생리, 심리, 습관 등을 고려 하여 항공기 조종실의 인간공학적 최적화 설계 및 배치 (Design and layout)를 개발초기단계부터 항공기를 설계할때에, 그 항공기의 조종실 품질은 조종사가 항공기 비행 임무를 수행할때에 항공기 비행을 위한 용이한 정보 인식(Sencing), 용이한 정보 결심(Deciding) 및 용이한 조종(Manipulating)의 특성을 조종사에게 제공할 때 항공기 비행 품질이 좋아질 것이다.

  • PDF

S/W Development of Flying Qualities Evaluation in Virtual Flight Test using MATLAB GUI (GUI 기반 가상모의시험 비행성 평가 S/W 개발)

  • Cho, Seung-Gyu;Rhee, Ihn-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • In an evaluation process of aircraft flying qualities, a clear and concise application interface is important since an evaluation process requires numerous repeated evaluation. This flight evaluation program have implemented efficient flight evaluation user interface along with changed trim condition interface and composed of comprehensive evaluation interface have mounted all automated FQ evaluation modules that was selected to be compose of 14 items in respect of an unmanned fixed-wing aircraft. Accordingly when it is necessary to design the flight control system as well as to develop a FQ considered aircraft, this S/W can be utilized as a tool that is a useful test evaluation S/W with scalability and enable to reduce the time and the cost of verification and evaluation process.

Design and Validation of Model Inversion Flight Control Law for Fly By Wire Helicopter (FBW 헬리콥터 모델 역변환 비행제어법칙 설계 및 검증)

  • Kim, Chong-Sup;Cho, In-Je;Lee, Seung-Duck;Lee, Han-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.678-687
    • /
    • 2012
  • The Fly-By-Wire(FBW) flight control system is essential to improve the stability and flying quality of the helicopter. Advanced aerospace companies, such as Bell-Sikorsky (USA) and NHI (European Consortium), have already applied the FBW flight control system to manufacture V-22 and NH-90 helicopters, respectively. This paper addresses the development of control law design using model inversion method improve the hover and low speed handling qualities of helicopter based on BO-105 model in 'Day' and 'Degraded visual environments(DVEs)' in accordance with ADS-33E-PRF. Design parameters are optimized to satisfy the handling qualities specification using Control Designer's Unified Interface (CONDUIT) commercial control law software. The result of the analysis based on CONDUIT and non-real time simulation in-house software, HETLAS (HElicopter Trim Linearization And Simulation) reveals that the provides an efficient mean to achieve Level 1 handling qualities.

LMI-Based Robust Flight Control of an Aircraft Subject to C.G Variation (선형행렬부등식 (LMI)을 이용한 비행체 무게중심 변화에 대한 강건한 제어기 설계)

  • Hong, Sung-Kyung;Kim, Byungsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.611-616
    • /
    • 2000
  • This paper presents a design method for the robust flight controller of a hyghly maneuvering aircraft subject to C.G variation. This method is based on LMI(Linear Matrix ZInequality) pole-placement design methodology for the polytopic models. Simulation results show that the proposed LMI-based pole-placement design methodology robustly yields uniform performance with adequate Flying Qualities (FQ) over the entire CG variation range.

  • PDF

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.

In-Flight Simulation for the Evaluation of Flight Control Law (비행제어계 평가를 위한 항공기 공중모의 비행시험)

  • Go,Jun-Su;Lee,Ho-Geun;Lee,Jin-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.79-88
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The FBWA configurations are of the same generic form of the Korean advanced trainer. The normal acceleration (Nz) and pitch rate (q) feedback control system is employed for longitudinal axis and roll rate (p) and lateral acceleration (Ny) feedback flight control law is developed in lateral/ directional axis. The flight tests for the FBW A dynamics evaluation were executed for the target aircraft (FBWA) on the IFS (In-Flight-Simulator) aircraft . The test results showed that Level 1 handling qualities for the most unstable flight regime and Level 1/2 for the landing approach flight regime were achieved. And the designed FBWA flight control law has revealed acceptable CHR (Cooper-Harper handling qualities Ratings).

Lateral and Directional SCAS Controller Design Using Multidisciplinary Optimization Program (통합 최적화 프로그램을 이용한 횡운동 SCAS 제어기 설계)

  • Lee, Sang-Jong;Lee, Jang-Ho;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • The flight controller should meet the flying qualities, stability margins, and time response requirement according to the class of a target aircraft or UAV. Classical design process of PID controller is a very time consuming process and needed trial and erros. The best way is to apply the multi-disciplinary optimization algorithm to meet the numerous constraints of controller requirements. This paper presents how multi-objective parameter optimization (CONDUIT) can be used to determine many design parameters of lateral stability and augmentation system for roll and heading controller of the small UAV. To verify the effectiveness of applying the optimization method, designed controller using optimization are compared with the baseline controller that is designed only considering the time responses.

Lateral-Directional Dynamic Inversion Control Applied to Supersonic Trainer (초음속 고등훈련기 가로-방향축 모델역변환 비행제어법칙 설계)

  • Kim, Chongsup;Ji, Changho;Cho, In-Je
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2014
  • The modern version of aircrafts is allowed to guarantee the superior handing qualities within the entire flight envelope by imposing the adequate stability and flying qualities on a target aircraft through the various techniques of flight control law design. Generally, the flight control law of the aircraft in service applies the various techniques of the verified control algorithm, such as dynamic inversion and eigenstructure assignment. The supersonic trainer employs the RSS(Relaxed Static Stability) concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system of both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. In this paper, the lateral-directional flight control law is designed by applying dynamic inversion control technique as a different method from the current supersonic trainer control technique, where the roll rate command system is designed at the lateral axis for the rapid response characteristics, and the sideslip command system is adopted at the directional axis for stability augmentation. The dynamic inversion of a simple 1st order model is applied. And this designed flight control law is confirmed to satisfy the requirement presented from the military specification. This study is expected to contribute to design the flight control law of KF-X(Korean Fighter eXperimental) which will proceed into the full-scale development in the near future.