• Title/Summary/Keyword: Fly-ash

Search Result 2,154, Processing Time 0.024 seconds

Nitrogen Oxides Adsorbing Capacity of High Carbon Fly Ash Containing Cementitious Materials (탄소함량이 높은 플라이애쉬를 함유한 시멘트 페이스트의 질소산화물 흡착 성능)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.37-42
    • /
    • 2018
  • The use of fly ash in construction materials is increasing worldwide due the various advantages of using it, such as to produce durable concrete, or to use less cement and thus lower carbon dioxide emissions. The quality of fly ash is often determined by loss on ignition value (LOI), where an upper limit of LOI is set in each country for quality control purpose. However, due to many reasons, production of high LOI fly ash is increasing that cannot be utilized in concrete, ending up in landfill. In this study, the effect of fly ash use in cementitious materials on nitrogen oxides adsorption is examined. In particular, the effect of using high LOI, and thus high carbon content fly ash on nitrogen oxides adsorption is investigated. The results suggest that the higher carbon content fly ash is related to higher nitrogen dioxide adsorption, although normal fly ash was also more effective in nitrogen dioxide adsorption than ordinary portland cement. Also, higher replacement rate of up to 40% of fly ash is beneficial for nitrogen dioxide adsorption. These results demonstrate that high carbon fly ash can be used as construction materials in an environmentally friendly way where strength requirement is low and where nitrogen oxides emissions are high.

Prediction of Maximum Fly Ash Conveying Capacity of Fly Ash System in a Power Plant (발전 보일러용 비회 이송설비에서 최대 비회 이송량 예측)

  • Jin, Kyung-Yong;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study presents prediction of maximum fly ash conveying capacity of fly ash system in a power plant. The mixture ratio and pressure drop characteristics of air-fly ash flow in piping system are not well understood due to the complexity of particle motion mechanism. In this paper, the researcher investigated the optimum mixture ratio when the pressure drop of fly ash conveying system is equal to maximum static pressure of displacement fly ash transport blower and the capacity of fly ash transport according to the optimum mixture ratio by experimenting the fly ash conveying system of domestic D coal thermal power plants, which is currently in operation. The experiment results showed that the maximum fly ash conveying capacity of fly ash system were founded under the condition of maximum air volume 5,040 m3/h, static pressure of trip condition 1,163 mmH2O. In addition, it was predicted maximum mixture ratio of the air-fly ash was 8.66 and maximum capacity of fly ash conveying was 52,600 kg/h under these conditions.

  • PDF

Assessment of potential environmental impact from fly ash landfill (국내 석탄회 육상매립의 오염 잠재성 평가)

  • Lee, Sang Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.25-35
    • /
    • 1999
  • Fly ash, by-product from coal fired power station, has long been regarded as a potential contamination source for heavy metals and inorganics due to their enriched concentrations and associations with particle surface. Feed coal and fly ash samples were collected from two power stations; Yongdong deliang with domestic anthracite coals and Boryong with imported bituminous coals. The coal and fly ash samples were analyzed for chemical composition and mineral components, using XRF and XRD. Batch leaching experiments were conducted by agitating samples with deionised water for 24 hours. Anthracite coals are generally higher in Al and Si contents than bituminous coals. This is due to the higher ash contents of the anthracite coal than bituminous coal. The chemistry of the two fly ash samples shows broadly similar compositions each other, except for the characteristically high contents of Cr in anthracite coal fly ash. Leaching experiments revealed that concentrations of metals gradually decreased with leachings in general. However, measurable amounts of metals were present in the effluent from weathered ash and the samples subjected to the leaching procedure. These metals are likely to indicate that the metals in fly ash were incorporated into glass fraction as well as associated with particle surface of samples. Dissolution of aluminosilicate glass would control releasing heavy metals from fly ash as weathering progresses during landfill with implication of possible groundwater contamination through fly ash landfill.

  • PDF

Study for Korean Fly Ash Characterization (국내 플라이 애쉬의 품질특성에 관한 연구)

  • 강민호;하재담;김기수;차춘수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.95-98
    • /
    • 1998
  • Fly ash is glassy dust collected from coal fired power plant. Recently, much research for fly ash conducted in Korea and fly ash is a valuable material especially when it used in high strength, high flowable, high durability concrete. But it varies with coal source, coal grinding and boiler conditions. Therefore, it is important that quality control of fly ash itself to get high quality concrete. In this study, over 20 samples of Poryong and Samchonpo fly ashs are tested and analyzed. The physical, chemical properties of fly ash and their relationships are investigated and it can be applied to quality control of concrete.

  • PDF

Electrostatic Beneficiation of Coal Fly Ash Utilizing Triboelectric Charging with Subsequent Electrostatic Separation

  • Lee, Jae-Keun;Kim, Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.804-812
    • /
    • 2001
  • A triboelectrostatic separation system for removing unburned carbon from coal fly ash is designed and evaluated. Fly ash from a coal-fired power plant is used as an accepted additive in concrete where it adds strength, sulfate resistance and reduced cost, provided acceptable levels of unburned carbon are maintained. Unfortunately, unburned carbon in coal fly ash absorbs some of other additives and reduces the concrete strength. This paper describes to investigate dry triboelectrostatic process to separate unburned carbon from coal fly ash and utilize it into economically valuable products. The laboratory-scale triboelectrostatic separation system consists of a particle feeding system, a tribocharger, a separation chamber, and collection systems. Particles of unburned carbon and fly ash can be imparted positive and negative surface charges, respectively, with a copper tribocharger due to differences in the work function values of the particles and the tribocharger, and can be separated by passing them through an external electric field. Results showed that fly ash recovery was strongly dependent on the electric field strength and the particle size. 70wt% of fly ash containing 6.5wt% of carbon contents could be recovered at carbon contents below 3%. The triboelectrostatic separation system showed a potential to be an effective method for removing unburned carbon from coal fly ash.

  • PDF

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.

AN EXPERIMENTAL STUDY ON THE PROPERTIES & APPLICATION FOR FLY ASH OF CONBINED HEAT POWER PLANT - FOCUSSED HIGH STRENGTH CONCRETE - (열병합발전소 플라이애쉬의 특성 및 활용방안에 관한 실험적 연구 -고강도 콘크리트를 중심으로-)

  • 권영호;백명종;이보근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.211-216
    • /
    • 1994
  • This study dealt with the properties for fly ash of conbined heat power plant and application for concrete industry. For this purpose, fly ash sampled Ulsan conbined heat power plant and analyzed for physical and chemical properties. As analyzed results of fly ash, contents of $SiO_ and Al_O_ $in the fly ash of Ulsan were less than those of Thermo-electric power plant(Boryuing), but contents of CaO were tem times as much as those of Boryung, because of these differences, it is expected that pozzolanic activity of concrete using fly ash of Ulsan will be different from another fly ash. Concrete specimens were tested to evaluate concrete preformance when 10 to 50 percent of the portland cement by weight in the concrete mix was replaced with fly ash of conbined heat power plant. As test results, workability and consideration in the fresh concrete were increased and concrete strength was showed more than 400kg/$\textrm{cm}^2$ for the required age. This study would be provided valuable data for the practical utilization of fly ash(conbined heat power plant). In the future, properties of fly ash concrete including long term strength, elapsed time, pozzolanic activity, modulus of elasticity, sulfate resistance, shrinkage, freeze-thaw durability and so on will be studied.

  • PDF

Efficiency factor of high calcium Class F fly ash in concrete

  • Sata, V.;Khammathit, P.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.583-595
    • /
    • 2011
  • This paper studied the cement efficiency factor (k factor) of high calcium Class F fly ash. This k factor represents a unit of fly ash with efficiency equivalent to k unit of cement. The high calcium Class F fly ash was used to replace cement in concrete. The modified Bolomey's law with linear relationship was used for the analysis of the result of compressive strength, cement to water ratio (c/w) and fly ash to water ratio (f/w) by using the multi-linear regression to determine the k factor and other constants in the equations. The results of analysis were compared with the results from other researcher and showed that the k factor of high calcium Class F fly ash depends on the fineness of fly ash, replacement level and curing age. While the amount of CaO content in Class F fly ash not evident. Furthermore, necessary criteria and variables for the determination of the k factor including the use of the k factor in concrete mix design containing fly ash were proposed.

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF