• 제목/요약/키워드: Fluxless bonding

검색결과 10건 처리시간 0.024초

Fluxless eutectic die bonding을 적용한 high power LED 패키지의 열저항 특성 (The Characteristics of Thermal Resistance for Fluxless Eutectic Die Bonding in High Power LED Package)

  • 신상현;최상현;김현호;이영기;최석문
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.303-304
    • /
    • 2005
  • In this paper, we report a fluxless eutectic die bonding process which uses 80Au-20Sn eutectic alloy. The chip LEDs are picked and placed on silicon substrate wafers. The bonding process temperatures and force are $305\sim345^{\circ}C$ and 10$\sim$100gf, respectively. The bonding process was performed on graphite heater with nitrogen atmosphere. The quality of bonding are evaluated by shear test and thermal resistance. Results of fluxless eutectic die bonding show that shear strength is Max. 3.85kgf at 345$^{\circ}C$ /100gf and thermal resistance of junction to die bonding is Min. 3.09K/W at 325$^{\circ}C$/100gf.

  • PDF

열원 형태에 의한 전자재료의 접합성에 관한 연구 I (A Study on Bondability of Electronic Materials by Different Heat Sources)

  • 신영의;양협;김경섭
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.110-116
    • /
    • 1994
  • This paper has been researched bondability of electronics devices, such as lead frame and the thick film of Ag/Pd on an alumina substrate by different heat sources. To obtain the bonds with high quality, it is very important to consist of different materials. Therefore, this paper clarifies not only heat mechanism of micro parallel gap resistance bonding method and pulse heat tip bonding method but also investigates selection of heat sources with micro-electronic materials for bonding. Finally, it is realized fluxless bonding process with filler metal such as plating layers.

  • PDF

플라즈마와 초음파를 이용한 무플럭스 솔데 플립칩 접합에 관한 연구 (A Study on Fluxless Solder Flip Chip Bonding Using Plasma & Ultrasonic Wave)

  • 홍순민;강춘식;정재필
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.138-140
    • /
    • 2001
  • Fluxless flip chip bonding using plasma & ultrasonic wave was investigated in order to evaluate the effect of plasma & ultrasonic treatment on the bondability of the Sn-3.5wt%Ag solder bumped die to TSM-coated glass substrate. The $Ar+10%H_2plasma$ was effective in removing tin oxide on solder surface. The die shear strength of the plasma-treated Si-chip is higher than that of non-treated specimen but lower than that of specimen bonded with flux. The die shear strength with the bonding load at 25W ultrasonic power increased to 0.8N/bump for all bonding temperature but decreased above 1.0N/bump.

  • PDF

Sn-Pb 공정솔더 플립칩의 접합강도에 미치는 플라즈마 처리 효과 (Effect of Plasma Treatment on the Bond Strength of Sn-Pb Eutectic Solder Flip Chip)

  • 홍순민;강춘식;정재필
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.498-504
    • /
    • 2002
  • Fluxless flip chip bonding process using plasma treatment instead of flux was investigated. The effect of plasma process parameters on tin-oxide etching characteristics were estimated with Auger depth profile analysis. The die shear test was performed to evaluate the adhesion strength of the flip chip bonded after plasma treatment. The thickness of oxide layer on tin surface was reduced after Ar+H2 plasma treatment. The addition of H2 improved the oxide etching characteristics by plasma. The die shear strength of the plasma-treated Sn-Pb solder flip chip was higher than that of non-treated one but lower than that of fluxed one. The difference of the strength between plasma-treated specimen and non-treated one increased with increase in bonding temperature. The plasma-treated flip chip fractured at solder/TSM interface at low bonding temperature while the fracture occurred at solder/UBM interface at higher bonding temperature.

솔더 포일을 이용한 무플럭스 솔더링에 관한 연구 (A Study on Fluxless Soldering using Solder Foil)

  • 신영의;김경섭
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.100-107
    • /
    • 1998
  • This paper describes fluxless soldering of reflow soldering process using solder foil instead of solder pastes. There is an increasing demand for the reliable solder connection in the recent high density microelectronic components technologies. And also, it is problem fracture of an Ozone layer due to freon as which is used to removal of remained flux on the substrate. This paper discussed joining phenomena, boudability and joining processes of microelectronics devices, such as between outer lead of VLSI package and copper pad on a substrate without flux. The shear strength of joints is 8 to 13 N using Sn/Pb (63/37 wt.%) solder foil with optimum joining conditions, meanwhile, in case of using Sn/In (52/48 wt.%) solder foil, it is possible to bond with low heating temperature of 550 K, and accomplish to high bonding strength of 25N in condition heating temperature of 650K. Finally, this paper experimentally shows fluxless soldering using solder foil, and accomplishes key technology of microsoldering processes.

  • PDF

Si 웨이퍼/솔더/유리기판의 무플럭스 접합에 관한 연구 (A Study on the Fluxless Bonding of Si-wafer/Solder/Glass Substrate)

  • 박창배;홍순민;정재필;;강춘식;윤승욱
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.305-310
    • /
    • 2001
  • UBM-coated Si-wafer was fluxlessly soldered with glass substrate in $N_2$ atmosphere using plasma cleaning method. The bulk Sn-37wt.%Pb solder was rolled to the sheet of $100\mu\textrm{m}$ thickness in order to bond a solder disk by fluxless 1st reflow process. The oxide layer on the solder surface was analysed by AES(Auger Electron Spectroscopy). Through rolling, the oxide layer on the solder surface became thin, and it was possible to bond a solder disk on the Si-wafer with fluxless process in $N_2$ gas. The Si-wafer with a solder disk was plasma-cleaned in order to remove oxide layer formed during 1st reflow and soldered to glass by 2nd reflow process without flux in $N_2$ atmosphere. The thickness of oxide layer decreased with increasing plasma power and cleaning time. The optimum plasma cleaning condition for soldering was 500W 12min. The joint was sound and the thicknesses of intermetallic compounds were less than $1\mu\textrm{m}$.

  • PDF

Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링 (Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer)

  • 문준권;강경인;이재식;정재필;주운홍
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Ag층을 이용한 Sn과 In의 무 플럭스 접합 (Fluxless Bonding Method between Sn and In Bumps Using Ag Capping Layer)

  • 이승현;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제11권2호
    • /
    • pp.23-28
    • /
    • 2004
  • 본 실험에서는 Ag 층을 이용한 무 플럭스 접합 공정을 개발하였으며 Ag의 유무에 따른 효과를 관찰하기 위해 In ($10{\mu}m$)과 Sn ($10{\mu}m$)솔더 및 Ag (100 nm)/In과 Ag/Sn 솔더를 thermal evaporation 방법으로 하부 금속층 위에 형성하였다. 접합부의 접촉저항과 전단 하중을 측정하기 위해 쿠폰시편을 제조하였으며 이리한 쿠폰시편은 $130^{\circ}C$에서 0.8, 1.6, 3.2 MPa의 접합압력을 가하여 30초간 접합을 실시하였다. 전단하중과 4단자 저항측정법을 이용하여 접합부의 특성을 분석하였으며 주사전자현미경(Scanning Electron Microscope), EDS (Energy Dispersive Spectrometry)과 X-ray mapping을 통해 접합부를 관찰하였다. 전단하중 측정 결과 0.8 MPa에서는 In-Sn 솔더의 접합이 이루어지지 않았으며 접합압력이 증가해도 Ag/In-Ag/Sn 시편의 전단하중 측정값이 In-Sn 시편에 비해 높게 나타났다. 접합부의 저항감은 $2-4\;m{\Omega}$을 나타내었으며 접합압력이 증가할수록 In-Sn 혼합층이 더 많이 관찰되었다.

  • PDF

마이크로 열원에 의한 이종전자재료의 접합성 (Bondability of Different Electronic Materials by Micro Heat source)

  • 이철인;서용진;신영의;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.206-209
    • /
    • 1994
  • This paper has been researched bondability of electronic devices, such as lead frame and thick film of Ag/Pd on an alumina substrate by different heat sources. To obtain the bonds with high quality, it is very important to control both the thermal distribution of the bonds and it stability, because electronics components is consist of different materials. Therefore, this paper clarifies not only heat mechanism of micro parallel gap resistance bonding method and pulse heat tip bonding method but also investigates selection of heat sources with micro-electronic materials for bonding. Finally, it is realzed fluxless bonding process with filler metal such as plating layers.

AuSn 솔더 박막의 스퍼터 증착 최적화와 접합강도에 관한 연구 (Deposition Optimization and Bonding Strength of AuSn Solder Film)

  • 김동진;이택영;이홍기;김건남;이종원
    • 마이크로전자및패키징학회지
    • /
    • 제14권2호
    • /
    • pp.49-57
    • /
    • 2007
  • 본 연구에서는 Au 와 Sn을 rf-magnetron sputter를 이용하여 다층막(multilayer)과 동시증착(Co-sputter)방법으로 스퍼터링하여 기판위에 AuSn 솔더를 형성하였고, 솔더의 조성제어와 특성 분석을 통해 Sn rich AuSn 솔더의 형성 기술에 대하여 연구하였다. AuSn 솔더를 형성하기 앞서 Au와 Sn에 대하여 단일 금속 증착을 하였다. 이를 토대로 AuSn솔더를 증착하기 위한 실험 조건을 확보하였다. 증착변수로는 기판의 온도, rf 전력과 두께 비를 이용하였다. 다층막의 경우, 고온의 기판에서 솔더 합금의 표면거칠기와 조성이 보다 정확하게 제어되었다. 이에 비해 동시증착 솔더는 기판의 온도에 의한 조성의 변화가 거의 없었으나, rf전력에 의해서 조성이 보다 쉽게 제어할 수 있었다. 여기에 더해, 동시 증착 솔더 박막의 대부분은 증착동안에 금속간 화합물로 변화한 것을 알 수 있었다. 화합물의 종류는 XRD로 분석하였다. 형성된 솔더 박막을 플럭스를 이용하지 않고 리드프레임에 접합하여 접합강도를 측정하였다. 다층형의 경우 Au 10wt%의 조건에서 최대 $33(N/mm^2)$ 전단응력을 나타내었으며, 동시증착형은 Au 5wt%에서 $460(N/mm^2)$ 전단응력을 나타내었다.

  • PDF