• Title/Summary/Keyword: Flux prediction

Search Result 338, Processing Time 0.028 seconds

Assessment of COBRA-TF for Critical Heat Flux

  • Chun, Tae-Hyun;Lim, Jong-Sun;Motoaki Okazaki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.75-81
    • /
    • 1996
  • COBRA-TF is a two fluid, three field subchannel code. Three fields are continuous vapor, continuous liquid and droplet. Some assessments are conducted to validate the related models and to estimate a code ability through dryout and post-CHF experiment in a tube and DNB test in rod bundles. It turned out form dryout and post-CHF experiment that the predicted dryout locations and wall temperature profiles are in close agreement with the experiments. On the other hand, DNB prediction of COBRA-TF are performed for two kinds of rod bundles along with EPRI CHF correlation. To estimate its performance COBRA-IV of homogeneous model is also run for the same data. The results say that COBRA-TF/EPRI is better in DNB prediction than COBRA-IV/EPRI. In addition the thermal-hydraulic behaviors due to the different two-phase flow models are presented at the condition of CHF.

  • PDF

Prediction of the Reflood Phenomena with modifications in RELAP5/MOD3.1

  • Jeong, Hae-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.409-414
    • /
    • 1997
  • Reflood model in RELAP5/MOD3.1 are modified to improve the unrealistic prediction results of the model. In the new method, the modified Zuber pool boiling critical heat flux (CHF) correlation is adopted. The reflood drop size is characterized by the use of We=1.5 and the minimum drop size of 0.0007 m for $p^{*}\;{\leq}\;0.025$. To describe the wall to vapor heat transfer at low pressure and low flow condition, the Webb-Chen correlation is utilized . The suggested method has been verified through the simulations of the Lehigh University rod bundle reflood tests. Through sensitivity study it is shown that the effect of drag coefficients is dominant in the reflood model. It is proved that the present modifications result in much more improved quench behavior and accurate wan and vapor temperature predictions.

  • PDF

Orbit Determination Error Analysis for the KOMPSAT (다목적 실용위성의 궤도 결정 오차 분석)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.437-447
    • /
    • 1998
  • Orbit error analysis was performed for the GPS navigation solutions and ground station tracking data of the KOMPSAT (Korea Multi-Purpose SATellite), which will be launched in 1999 for cartography of Korean peninsula as main mission. A least square method was used for the orbit determination and prediction error simulation including tracking data noises and dynamic modeling errors. It was found that a short-term periodic orbit determination error was caused by the tracking data noise and dominant orbit prediction error was caused by solar flux uncertainty.

  • PDF

Numerical Prediction of Open Water Performance of Flapped Rudders

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A low-order potential based boundary element method is applied for the prediction of the performance of flapped rudders as well as all-movable rudders in steady inflow. In order to obtain a reasonable solution at large angles of attack, the location of the trailing wake sheet is determined by aligning freely with the local flow. The effect of the wake sheet roll-up is also included with use of a high order panel method. The flow in the gap of a flapped rudder is modeled as Couette flow and its effect is introduced into the kinematic boundary conditions for flux at both the inlet and the outlet of the gap. In order to validate the present method, the method is applied for a series of rudders and the computational results on forces and moments are compared with experimental data. The effect of the gap size on the forces and moments is also presented.

  • PDF

A Study on Slot-opening Effect in Interior Permanent Magnet Motor (매입형 영구자석 전동기의 Slot-opening Effect에 관한 연구)

  • Fang, Liang;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1027-1028
    • /
    • 2007
  • In this paper, the variation of air-gap field intensity caused by the slot-opening in interior permanent magnet (IPM) motor is investigated, which is for predicting the instantaneous magnetic field more preciously in analytical method further. It is different with the approach of dealing the slot-opening effect on the air-gap field distribution with the "relative permeance" function in surface permanent magnet (SPM) motor. The prediction of the air-gap field in IPM motor is much more complex than SPM motor. In this study, an approximate estimation method is adopted based on analyzing the changing of flux path in both the IPM rotor part and stator part, and in additional an analytical function defined as "relative pole-arc" is built. The finite element method(FEM) is used for confirming the slot-opening effect on the field prediction.

  • PDF

Numerical Prediction of Flow and Heat Transfer on Lubricant Supplying and Scavenging Flow Path of An Aero-engine Lubrication System

  • Liu, Zhenxia;Huang, Shengqin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.22-24
    • /
    • 2008
  • This paper presents a numerical model of internal flows in a lubricant supplying and scavenging flow path of an aero-engine lubrication system. The numerical model was built in the General Analysis Software of Aero-engine Lubrication System, GASLS, developed by Northwestern Polytechnical University. The lubricant flow flux, pressure and temperature distribution at steady state were calculated. GASLS is a general purpose computer program employed a 1-D steady state network algorithm for analyzing flowrates, pressures and temperatures in a complex flow network. All kinds of aero-engine lubrication systems can be divided into finite correlative typical elements and nodes from which the calculation network be developed in GASLS. Special emphasis is on how to use combined elements which is a type of typical elements to replace some complex components like bearing bores, accessory gearboxes or heat exchangers. This method can reduce network complexity and improve calculation efficiency. Final computational results show good agreement with experimental data.

  • PDF

Numerical Analysis of Heat and Mass Transfer in a Calandria Based Reactor

  • Tupake Ravindra S;Kulkarni PS;Rajan NKS
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.281-282
    • /
    • 2003
  • Numerical investigations are carried out to study the mass flux and temperature distribution in a calandria using a 3-D RANS code. The computations made for simulations of flow and convective heat transfer with near-to working conditions. The work provides an estimate of the safe working limits of the heat dissipation by virtue of prediction of the 'hot spots' in the calandria. The work assumes significance for preliminary designs of the reactors and for detailed critical parametric analysis that would be otherwise more expensive.

  • PDF

Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites (국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석)

  • Kim, Hyeri;Hong, Je-Woo;Lim, Yoon-Jin;Hong, Jinkyu;Shin, Seung-Sook;Kim, Yun-Jae
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.