• 제목/요약/키워드: Flux gradient

검색결과 223건 처리시간 0.027초

HEATING OF SUNSPOT CHROMOSPHERES BY SLOW-MODE ACOUSTIC SHOCK WAVES

  • Lee, Myung-Gyoon;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제18권1호
    • /
    • pp.15-31
    • /
    • 1985
  • Making use of the arbitrary shock theory developed by Ulmschneider (1967, 1971) and Ulmschneider and Kalkofen (1978), we have calculated the dissipation rates of upward-travelling slow-mode acoustic shock waves in umbral chromospheres for two umbral chromosphere models, a plateau model by Avrett (1981) and a gradient model by Yun and Beebe (1984). The computed shock dissipation rates are compared with the radiative cooling rate given by Avrett (1981). The results show that the slow-mode acoustic shock waves with a period of about 20 second can heat the low umbral chromospheres travelling with a mechanical energy flux of $2.6{\times}10^6\;erg/cm^2s$ at a height of $300{\sim}400km$ above the temperature minimum region.

  • PDF

Development of the RE indirect-heating LPE furnace and the effect of impurity in YIG film on the MSSW properties

  • Fujino, M.;Fujii, T.;Sakabe, Y.
    • 한국결정성장학회지
    • /
    • 제12권6호
    • /
    • pp.288-291
    • /
    • 2002
  • We developed a new RF indirect-heating LPE furnace. The thermal gradient of our newly developed furnace is less than that of direct heating, and is as gentle as that of the resistance-heating LPE furnace. With this new furnace, the heating and/or cooling is faster than that of the resistance-heating furnace. Impurity-doped YIG film was grown from a $PbO-B_{2}O_{3}$, based flux on a (111) GGG substrate. To study the effect of the impurities on the MSSW threshold power and the saturation response time, we used two microstrip lines to excite and propagate the MSSW at 1.9 GHz. The MSSW threshold power and saturation response time was found to be related to the $\Delta$H.

위성체 2-D 구조물의 열 안정성 해석 (Thermal Stability Analysis of 2-D Spacecraft Appendage)

  • 윤일성;송오섭;김규선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

턴널링 전류효과를 이용한 마이크로가속도 센서의 축전기부 해석 (Analysis in Capacitor of Microaccelerometer Sensor Using Tunnelling Current Effect)

  • 김옥삼
    • 동력기계공학회지
    • /
    • 제3권4호
    • /
    • pp.57-62
    • /
    • 1999
  • The microaccelerometer using a tunnelling current effect concept has the potential of high performance, although it requires slightly complex signal-processing circuit for servo-system. The paddle of micro accelerometer is pulled to have the gap width of about 2nm which almost allows the flow tunnelling current. This paper demonstrates at capacitor of microaccelerometer the use of the coupled thermo-electric analysis for voltage, current, heat flux and Joule heating then tunnelling current flows. Two electrodes are applied to the microaccelerometer producing a unform difference of temperature gradient and electric potential between the paddle and the substrate.

  • PDF

미세 다공막을 통한 기체 투과기구 (Mechanisms of Gas Permeation through Microporous Membranes - A Review)

  • 황선탁
    • 멤브레인
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션 (Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field)

  • 홍정혜;김유근
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.545-565
    • /
    • 2014
  • In this paper we derive a priori $L^{\infty}(L^2)$ error estimates for expanded mixed finite element formulations of semilinear Sobolev equations. This formulation expands the standard mixed formulation in the sense that three variables, the scalar unknown, the gradient and the flux are explicitly treated. Based on this method we construct finite element semidiscrete approximations and fully discrete approximations of the semilinear Sobolev equations. We prove the existence of semidiscrete approximations of u, $-{\nabla}u$ and $-{\nabla}u-{\nabla}u_t$ and obtain the optimal order error estimates in the $L^{\infty}(L^2)$ norm. And also we construct the fully discrete approximations and analyze the optimal convergence of the approximations in ${\ell}^{\infty}(L^2)$ norm. Finally we also provide the computational results.

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 제3회 심포지움 (분리막 연구의 최신동향)
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

탄화수소계 냉매의 응축 압력강하에 관한 연구 (Study on Condensing Pressure Drop of Hydrocarbon Refrigerants)

  • 김재돌;최준혁;정석권;윤정인;이호생
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.218-224
    • /
    • 2006
  • Experimental results for pressure gradient of HCs refrigerants R-290. R-600a. R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have the tube inner diameter of 10.98mm. and the tube inner diameter of 8mm are used for this investigation. Hydrocarbon refrigerants have higher pressure drop than R-22 in both test sections with the diameters of 12.70mm and 9.52mm. Pressure drop increased with the increase of the mass flux. These results form the investigation can be used in the design of heat transfer exchanger using hydrocarbons as the refrigerant for the air-conditioning systems

타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성 (Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure)

  • 한성호;서정식;신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.