• Title/Summary/Keyword: Flux characteristics curve

Search Result 60, Processing Time 0.034 seconds

Valve core shapes analysis on flux through control valves in nuclear power plants

  • Qian, Jin-yuan;Hou, Cong-wei;Mu, Juan;Gao, Zhi-xin;Jin, Zhi-jiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2173-2182
    • /
    • 2020
  • Control valves are widely used to regulate fluid flux in nuclear power plants, and there are more than 1500 control valves in the primary circuit of one nuclear power plant. With their help, the flux can be regulated to a specific level of water or steam to guarantee the energy efficiency and safety of the nuclear power plant. The flux characteristics of the control valve mainly depend on the valve core shape. In order to analyze the effects of valve core shapes on flux characteristics of control valves, this paper focuses on the valve core shapes. To begin with, numerical models of different valve core shapes are established, and results are compared with the ideal flux characteristics curve for the purpose of validation. Meanwhile, the flow fields corresponding to different valve core shapes are investigated. Moreover, relationships between the valve core opening and the outlet flux under different valve core shapes are carried out. The flux characteristics curve and equation are proposed to predict the outlet flux under different valve core openings. This work can benefit the further research of the flux control and the optimization of the valve core for control valves in nuclear power plants.

Development of a Compensating Algorithm for an Iron-cored Measurement CT using Flux-magnetizing Current Curves and Voltage-core Loss Current Curves (자속-자화 전류 곡선과 전압-철손 전류 곡선을 이용한 측정용 철심 변류기의 보상 알고리즘 개발)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kang, Hae-Gweon;Lee, Byung-Eun;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1849-1854
    • /
    • 2009
  • This paper describes the design, evaluation and implementation of a compensating algorithm for an iron-cored measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error of the CT. The proposed algorithm decomposes the exciting current into the core loss current and the magnetizing current and each of them is estimated. The core loss current is calculated from the secondary voltage and the voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-magnetizing current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core loss and magnetizing currents and then added to the measured current to obtain the correct secondary current. The voltage-core loss current curve and flux-magnetizing current curves, which are different from the conventional curves, are derived in this paper. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The experimental test results of an iron-core type electronic CT, which consists of the iron-core and the compensation board, are also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

A Study on Fatigue Strength Characteristics of Weld Joint using Metal Type Flux Cored Wire (금속계 플럭스들이 용접이음부의 피로강도 특성에 관한 연구)

  • 강성원;신동진;김환식
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.151-161
    • /
    • 1994
  • FCAW has wide application in ship fabrication, maintenance and field erection. It has many advantages over SMAW.SAW and GMAW process. In many applications, the FCAW provides highquality weld metal. This method can reduce weld defects especially porosity and spatter. But the fatigue characteristics of those deposited metal have been rarely investigated. The purpose of this study is to investigate the cyclic stress-strain behavior and fatigue tests by the constant strain control were carried out on the rounded smooth specimen with deposited metal using the metal type flux cored wire. As the results of this study for the deposited metal welded by the metal type flux cored wire, the hardening or softening characteristics under cyclic load were investigated and cyclic stress-strain curve, strain-fatigue life curve, stress-strain function and fatigue life relation which are useful to estimate the fatigue life under the stress concentration condition were obtained.

  • PDF

Compensating algorithm for the secondary current of a measurement type CT considering the secondary voltage-core loss current curve and the flux linkage-magnetizing current curve (2차 전압-철손 전류 곡선과 자속-자화 전류 곡선을 고려한 측정용 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.65-66
    • /
    • 2008
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the CT. The proposed algorithm decomposes the exciting current into the magnetizing current and the core loss current and each of them is estimated. The core loss current is calculated from the secondary voltage and the secondary voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to compensate the secondary current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The test results of the real CT were also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

  • PDF

A Study on the Spray Cooling Characteristics of hot Flat Plates (고온평판의 분무냉각특성에 관한 연구)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution (후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성)

  • Kim, Tea-Yong;Kim, Jea-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.

Effect of Fusing Treatment on Anti-Corrosion Characteristics of Ni-based Self-flux Alloy Coating (니켈기 자융성 합금 코팅의 방식특성에 미치는 후열처리의 영향)

  • Kim, Tae-Yong;Kim, Jae-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2013
  • This study aims at investigating the effect of a fusing treatments on anti-corrosion characteristics of Ni-based self-flux alloy coating. Ni-based coatings were fabricated by flame spray process on steel substrates, and fusing treatments were performed using a vacuum furnace at $800^{\circ}C$ $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After fusing treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Fusing-treated coating at $1100^{\circ}C$ showed more favorable anti-corrosion characteristics than as-sprayed coating. Anticorrosive effect of fusing-treated coating at solution with pH 2 was relatively greater than at solution with pH 6. Fusing-treated coating at $1100^{\circ}C$ showed the most excellent anti-corrosion characteristics.

Characteristics Analysis of IPM Motor Considering Magnetic Saturation of Electrical Steel (IPM 모터 철심의 포화를 고려한 특성 해석)

  • Ha, Kyung-Ho;Ahn, Young-Jun;Na, Min-Su
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1031-1032
    • /
    • 2011
  • This paper deals with the characteristics analysis of Interior Permanent Magnet Type Motor varying with magnetization curve of electrical steel interpolated with several method in the high field region. The data of magnetization curve of electrical steel given by the steel maker is not enough in order to analysis the characteristics by menas of FEM. Especially, the core in the bridge part have a severe saturation because the bridge width is narrow to reduce the flux leakage produced by the permanent magnet. This paper make the three kinds of magnetization curve by extrapolation and then the motor is analyzed by using these magnetization curve. The motor parameters are compared to explain the effects of magnetization curve.

  • PDF

A Study on the Effects of Rotation Rate and Flow Rate on the Operating Characteristics in Centrifugal Pump (원심펌프에서 회전수 및 유량변화가 운전특성에 미치는 영향)

  • Lim, Kwang-Mook;Lee, Sung-Ill
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.56-62
    • /
    • 2019
  • This study examined effects of the operating characteristics of a pump according to the rotational speed of a pump and the change in flow rate when a centrifugal pump operates under the following conditions: regulated flow rate, head, rotational speed, and specific speed of 0.7 m/min, 8 m, 1750 rpm, an 182 (m, ㎥/min, rpm), respectively. The pump in the experiment did not have a guide vane and was connected directly to the rim, so that the rotational speed of the volute pump in a spiral or volute casing increased by 100 rpm from 1350 to 1750 rpm. The result of the relationship between the H-Q, L-Q, and 𝜂-Q characteristics and the dimensionless performance characteristics, such as the head coefficient, power coefficient and efficiency were studied. The change in pump performance could be estimated depending on the increase in the number of revolutions. The maximum efficiency of the pump was 52% with 1450 rpm, 0.165 ㎥/min flux, and 4.73 m of lift. The efficiency reached 50% with a maximum of 1750 rpm, 0.183 ㎥/min of flux, and 6.72 m of lift. The efficiency curve on the performance characteristics of the lift versus flux curve became oval not a curve from a quadratic equation that passes through the starting point according to the similarity law of the pump. Finally, when the flux coefficient increased, the power coefficient increased and the lift coefficient decreased. When the flux coefficient was 0.08, the maximum efficiency was 52%. Therefore, the change in flux affects the driving characteristics.

Current Limitation Characteristics of Josephson Junction Array (조셉슨 접합 어레이의 전류 차단특성)

  • Kang, C.S.;Kim, K.;Yu, K.K.;Lee, S.J.;Kwon, H.;Hwang, S.M.;Lee, Y.H.;Kim, J.M.;Lee, S.K.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.144-148
    • /
    • 2009
  • A current limiter was manufactured using a Josephson junction array to cut off an excessive current flowing into the SQUID sensor. The Fabricateed Josephson junction array was connected in series with a flux transformer that consists of a pick-up coil and an input coil, and the flux transformer was inductively coupled with a Double Relaxation Oscillation SQUID(DROS). The flux-voltage modulation curve was induced by applying an AC magnetic field whose magnitude was far smaller than that of the DC magnetic field. A change in the flux-voltage modulation curve of the SQUID was observed while the DC magnetic field was increased, to qualitatively examine the current limiting characteristic of the Josephson junction array. As a result, it was found that the SQUID flux-voltage modulation curve disappeared at the critical current of the Josephson junction array, which indicates that the Josephson junction array properly works as a current limiter.

  • PDF