• Title/Summary/Keyword: Flux Flow

Search Result 1,680, Processing Time 0.024 seconds

A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

  • PDF

Forward Osmosis Based Seawater Desalination using Liquid Fertilizer as Draw Solution (액상 비료를 유도 용액으로 사용하는 정삼투 기반의 해수 담수화)

  • Park, Seong-Jik;An, Hee-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The present study explored the way to desalinate seawater for agricultural irrigation using forward osmosis (FO) process using liquid fertilizer as draw solution. FO experiments were performed in a cross flow mode using flat sheet FO membrane. The effect of membrane orientation, flow rate, and draw solution concentration on the performance of forward osmosis was investigated by measuring water flux of forward osmosis membrane. The water flux when the draw solution was placed against the membrane active layer was lower than the water flux when the feed solution was placed against the membrane active layer. This results indicated that the decrease of effective osmotic pressure by dilutive internal concentration polarization was less than that by concentrative internal concentration polarization. Increasing flow rate from 66.7 to 133.1 $cm^3$/min resulted in increase of the water flux when the membrane active layer orient to draw solution and feed solution, respectively. The reduction of resistance to water flow increased water flux at higher flow rate. The water flux of FO membrane increased with increasing draw solution concentration from 10000 to 30000 mg/L. The water flux for $KH_2PO_4$ draw solution was similar to that for commercial fertilizer. Optimization of FO process would contribute to economically desalinate brackish water for agricultural use.

Transdermal Delivery of Ketoprofen and the Effect of Electroosmosis (케토프로펜의 경피전달 및 전기삼투압의 영향)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.491-497
    • /
    • 2004
  • We investigated some important factors which affect the transdermal flux of ketoprofen, a nonsteroidal anti-inflammatory agent, as a first step to provide some basic knowledge for the development of a iontophoretic transdermal patch system. Factors such as current density, polarity, buffer (HEPES) and electrolyte concentration and pH were studied using hairless mouse skin. The effect of poly(L-lysin), which is known to affect the electro-osmotic flow through skin, on flux was also studied. Passive flux was about $20\;{\mu}g/cm^2hr$ at pH 4.0, but was negligible at pH 7.4 where all ketoprofen molecules dissolved are ionized (ketoprofen pKa=5.94). At pH 4.0, application of anodal current increased the flux further above the passive level, however anodal flux at pH 7.4 was much smaller than passive flux at pH 4.0. The application of cathodal current at pH 4.0 increased the average flux to $30-40\;{\mu}g/cm^2hr$, depending on the current density applied. At pH 7.4, cathodal flux was only about $5\;{\mu}g/cm^2hr$. Decrease in buffer and electrolyte concentration increased this cathodal flux about 10 fold. However decrease in HEPES buffer concentration 100 fold did not affect the flux. Anodal flux of acetaminophen was much larger than cathodal flux, indicating that electroosmotic flow can be playing an important role in the flux. Poly(L-lysin) increased the cathodal flux at pH 7.4. These results provide some important insights into the mechanism of transdermal flux of ketoprofen and the role of electroosmotic flow.

Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace (유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

A Study on Wettability and Defects Behavior of Flow-soldered Joint using Low Residue Flux (저잔사 플럭스를 사용한 플로우 솔더링부의 젖음성 및 결함거동에 관한 연구)

  • 최명기;이창열;정재필;서창제;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 1998
  • Effects of non-cleaning and cleaning fluxes on the wetting properties and defects at flow soldered joints were investigated. Non-cleaning flux (R-type of 3.3% solid content) and cleaning flux (RMA-type of 15% solid content) were used. Wetting test was accomplished by wetting balance method with changing surface state of wetting specimen, CU. Sn-37%Pb solder was used for wetting test and flow soldering. As experimental results, the wetting time for vertical force from the surface tension being zero was mainly affected by surface state of the wetting specimen. Non-cleaning flux had a good wettability compared with cleaning flux. In case of non-cleaning flux, conveyor speed had a great affection to defects of bridge, icicle, and poor solder.

  • PDF

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

DAM BREAK FLOW ANALYSIS WITH APPROXIMATE RIEMANN SOLVER

  • Kim, Dae-Hong
    • Water Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.175-185
    • /
    • 2003
  • A numerical model to analyze dam break flows has been developed based on approximate Riemann solver. The governing equations of the model are the nonlinear shallow-water equations. The governing equations are discretized explicitly by using finite volume method and the numerical flux are reconstructed with weighted averaged flux (WAF) method. The developed model is verified. The first verification problem is about idealized dam break flow on wet and dry beds. The second problem is about experimental data of dam break flow. From the results of the verifications, very good agreements have been observed

  • PDF

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Visualization of Rotational Flow for Chamber Size of a 2×2 Microfluidic Centrifuge (마이크로 유체 원심분리기의 챔버 크기에 따른 회전 유동 가시화)

  • Jeon, Hyeong Jin;Kwon, Bong Hyun;Kim, Dae Il;Go, Jeung Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.25-29
    • /
    • 2012
  • This paper introduces a new parameter to design the $2{\times}2$ microfluidic centrifuge with single flow rotation positioned at the center of microchamber. The dimensional centrifugal acceleration momentum flux which is defined as the interfacial momentum flux divided by distance from the center of the chamber explains the flow rotation and its threshold provides a reference to expect single flow rotation. Through the numerical and experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a channel width of $50{\mu}m$ and chamber width of $250{\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a channel width of $100{\mu}m$ and chamber width of $500{\mu}m$, single flow rotation did not appear. The numerical analysis showed that the threshold centrifugal acceleration momentum flux to obtain single flow rotation was $3500kg/m{\cdot}s^2$.