• 제목/요약/키워드: Fluorine doped ZnO film

검색결과 8건 처리시간 0.03초

F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상 (Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration)

  • 장수영;장준성;조은애;;김지훈;문종하;김진혁
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.150-155
    • /
    • 2021
  • Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 ℃. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • 김도영;이준신;김형준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • 한국재료학회지
    • /
    • 제30권9호
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가 (ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation)

  • 박종현;김효진
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

용액공정용 불소 도핑된 인듐 갈륨 징크 산화물 반도체의 박막 트랜지스터 적용 연구 (Solution-Processed Fluorine-Doped Indium Gallium Zinc Oxide Channel Layers for Thin-Film Transistors)

  • 정선호
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.59-62
    • /
    • 2019
  • 본 논문은 용액공정용 불소 도핑된 인듈 갈륨 징크 산화물 반도체를 연구하였으며, 박막 트랜지스터 적용 가능성을 확인하였다. 용액형 산화물 반도체를 형성하기 위해, 금속염 전구체 기반 용액을 제조하였으며, 추가적인 불소 도핑을 유도하기 위해 화학적 첨가제로서 암모늄 플로라이드를 이용하였다. 열처리 온도 및 불소 도핑양에 따른 전기적 물성을 고찰함으로서, 300도 저온 열처리를 통해 제조된 산화물 반도체층의 전기적 특성을 향상시켰다. 20 mol% 불소를 도핑하는 경우, $1.2cm^2/V{\cdot}sec$의 이동도 및 $7{\times}10^6$의 점멸비 특성이 발현 가능함을 확인하였다.

수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용 (Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application)

  • ;남민식;;전성찬
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.97-101
    • /
    • 2016
  • 산화아연은 다양한 나노 구조와 특유의 특성으로 인하여 여러 분야에서 많은 관심을 받고있는 물질이다. 산화아연을 합성하는 다양한 방법 중에서, 수열합성법은 간단하고 친환경적인 장점을 가지고 있다. 나노 구조를 가지는 산화아연 박막은 수열합성법을 통하여 FTO 전극 위에 제작되었다. 성장된 산화아연은 X-ray diffraction (XRD)와 Field-emission scanning electron microscopy (FESEM)을 통하여 분석되었다. XRD 분석에서 산화아연 박막이 자연상태의 hexagonal wurtzite 상으로 구성되어 있음을 확인하였으며 SEM 사진에서는 나노 로드 형태를 구성하고 있는 것을 확인할 수 있었다. 본 연구에서는 UV 영역의 흡수 스펙트럼을 분석하여 산화아연이 보이는 365 nm 파장에서의 흡수를 확인하였다. 또한 photoluminescence 방출을 분석한 결과, 424 nm의 band edge emission과 500 nm에서 산화아연의 oxygen vacancies에 의한 방출을 확인하였다. 또한 라만 스펙트럼 분석을 통하여 본 연구진이 제작한 산화아연이 높은 결정성을 가지고 있는 것을 확인할 수 있었다. 이러한 연구를 통하여 다양한 특성을 가진 산화아연의 광촉매적 적용을 기대할 수 있다.