• Title/Summary/Keyword: Fluorine contamination

Search Result 27, Processing Time 0.024 seconds

A Review on the Analytical Techniques for the Determination of Fluorine Contents in Soil and Solid Phase Samples (토양 및 고체시료 중 불소함량 측정기법)

  • An, Jinsung;Kim, Joo-Ae;Yoon, Hye-On
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2013
  • Current status of soil contamination with fluorine and its source were investigated. The basic principles and procedures of various techniques for the analysis of fluorine contents in soil and solid phase samples were summarized in this review. Analysis of fluorine in solid matrices can be achieved by two types of techniques: (i) UV/Vis spectrophotometer or ion selective electrode (ISE) analysis after performing appropriate extraction steps and (ii) direct solid analysis. As the former cases, the standard method of Korean ministry of environment, alkali fusion-ISE method, pyrohydrolysis, oxygen bomb combustion, aqua regia digestion-automatic analysis, and sequential extraction-ISE method were introduced. In addition, direct analysis methods (i.e., X-ray fluorescence spectrometry and proton induced gamma-ray emission spectrometry) and atomic spectrometry combining with the equipment for introducing solid phase sample were also reviewed. Fluorine analysis techniques can be reasonably selected through site-specific information such as matrix condition, contamination level, the amount of samples and the principles of various methods for the analysis of fluorine presented in this review.

Fluorine Penetration Characteristics on Various FSG Capping Layers (FSG Capping 레이어들에서의 플루오르 침투 특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Eom, Joon-Chul;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.26-29
    • /
    • 2004
  • High density plasma fluorinated silicate glass (HDP FSG) is used as a gap fill film for metal-to-metal space because of many advantages. However, FSG films can cause critical problems such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. It is known that these problems are caused by fluorine penetration out of FSG film. To prevent it, FSG capping layers such like SRO (Silicon Rich Oxide) are needed. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated. Normal stress and High stress due to denser film. While heat treatment to PETEOS caused lower blocking against fluorine penetration, it had insignificant effect on SiN. Compared with other layers, SRO using ARC chamber and SiN were shown a better performance to block fluorine penetration.

  • PDF

Study on Fluorine Penetration of Capping Layers using FTIR analysis (FTIR을 이용한 캐핑레이어의 플루오르 침투 특성 연구)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.300-303
    • /
    • 2004
  • To fill the gap of films for metal-to-metal space High density plasma fluorinated silicate glass (HDP FSG) is used due to various advantages. However, FSG films can have critical drawbacks such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. These problems are generally caused by fluorine penetration out of FSG film. Hence, FSG capping layers such like SRO(Silicon Rich Oxide) are required to prevent flourine penetration. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated through FTIR analysis. FTIR graphs of both SRO using ARC chamber and SiN show that clear Si-H bonds at $2175{\sim}2300cm^{-1}$. Thus, Si-H bond at $2175{\sim}2300cm^{-1}$ of FSG capping layers lays a key role to block fluorine penetration as well as dangling bond.

  • PDF

Fluorine Plasma Corrosion Resistance of Anodic Oxide Film Depending on Electrolyte Temperature

  • Shin, Jae-Soo;Kim, Minjoong;Song, Je-beom;Jeong, Nak-gwan;Kim, Jin-tae;Yun, Ju-Young
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • Samples of anodic oxide film used in semiconductor and display manufacturing processes were prepared at different electrolyte temperatures to investigate the corrosion resistance. The anodic oxide film was grown on aluminum alloy 6061 by using a sulfuric acid ($H_2SO_4$) electrolyte of 1.5 M at $0^{\circ}C$, $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$. The insulating properties of the samples were evaluated by measuring the breakdown voltage, which gradually increased from 0.43 kV ($0^{\circ}C$) to 0.52 kV ($5^{\circ}C$), 1.02 kV ($10^{\circ}C$), and 1.46 kV ($15^{\circ}C$) as the electrolyte temperature was increased from $0^{\circ}C$ to $15^{\circ}C$, but then decreased to 1.24 kV ($20^{\circ}C$). To evaluate the erosion of the film by fluorine plasma, the plasma erosion and the contamination particles were measured. The plasma erosion was evaluated by measuring the breakdown voltage after exposing the film to $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas. With exposure to $CF_4/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.41 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0.83 kV. With exposure to $NF_3/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.38 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0. 77 kV. In addition, for the entire temperature range, the breakdown voltage decreased more when sample was exposed to $NF_3/O_2/Ar$ plasma than to $CF_4/O_2/Ar$ plasma. The decrease of the breakdown voltage was lower in the anodic oxide film samples that were grown slowly at lower temperatures. The rate of breakdown voltage decrease after exposure to fluorine plasma was highest at $20^{\circ}C$, indicating that the anodic oxide film was most vulnerable to erosion by fluorine plasma at that temperature. Contamination particles generated by exposure to the $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas were measured on a real-time basis. The number of contamination particles generated after the exposure to the respective plasmas was lower at $5^{\circ}C$ and higher at $0^{\circ}C$. In particular, for the entire temperature range, about five times more contamination particles were generated with exposure to $NF_3/O_2/Ar$ plasma than for exposure to $CF_4/O_2/Ar$ plasma. Observation of the surface of the anodic oxide film showed that the pore size and density of the non-treated film sample increased with the increase of the temperature. The change of the surface after exposure to fluorine plasma was greatest at $0^{\circ}C$. The generation of contamination particles by fluorine plasma exposure for the anodic oxide film prepared in the present study was different from that of previous aluminum anodic oxide films.

Dry etching of ZnO thin film using a $CF_4$ mixed by Ar

  • Kim, Do-Young;Kim, Hyung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1504-1507
    • /
    • 2009
  • In this paper, the etching behavior of ZnO in $CF_4$ plasma mixed Ar was investigated. Previously, the etch rate in $CF_4$/Ar plasma was reported that it is slower than that in Cl containing plasma. But, plasma included Cl atom can produce the by-product such as $ZnCl_2$. In order to solve this film contamination, no Cl containing etching gas is required. We controlled the etching parameter such as source power, substrate bias power, and $CF_4$/Ar gas ratio to acquire the fast etch rate using a ICP etcher. We accomplished the etching rate of 144.85 nm/min with the substrate bias power of 200W. As the energetic fluorine atoms were bonded with Zinc atoms, the fluoride zinc crystal ($ZnF_2$) was observed by X-ray photoelectron spectroscopy (XPS).

  • PDF

Fluorine Contens of the Underground Waters in the Choong Nam Province (I).-the town ONYANG- (忠南地區 地下水 中의 弗素含量 調査에 關한 硏究 (I)-溫陽邑內)

  • Park, Kyu-Chang;Park, Jong-Yul
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.75-83
    • /
    • 1970
  • 66 samples of underground waters at the town Onyang were collected and analyzed from August 19 to November 5, 1969. Fluorine more than 1.0 mg/l is contained in the under ground waters in the region 0.9 km away from the Onyang hot springs, fluorine more than 0.3 mg/l in the waters in the region 1.2 km away from the hot springs, and 0.04-0.29 mg/l fluorine in the waters in the region from 1.2 km to 3.9 km away from the hot springs. It is advisable that the residents in their teeth growing ages must not drink the underground waters in the region 1.2 km away from the hot springs because the waters cause dental trouble (mottled teeth) and they may drink the waters in the region from 1.2 km to 3.9 km away from the hot springs for the fluoridation of their teeth. It is reasonable to suppose that the high fluorine contents of the underground waters are caused mainly by the contamination of the hot spring waters in which fluorine and calcium in rock are dissolved, in the region 1.2 km away from the hot springs, and that the waters in the region from 1.2 km to 3.9 km away from the hot springs contain much fluorine produced by the decomposition of organic substances.

  • PDF

Assessment of Soil Pollutant Distribution Characteristics and Heavy Metal Pollution in Korea (국내 토양오염물질 분포 특성 및 중금속 오염도 평가)

  • Lee, Jong Cheol;Kang, Min Woo;Choi, Gyu Hyuk;Oh, Se Jin;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • BACKGROUND: Heavy metals discharged from various sources contaminate the soil and water and the residuals can persistently be accumulated. In this study, the concentration of soil heavy metals was assessed over the whole regions of Korea based on the contamination factor and the geoaccumulation index. METHODS AND RESULTS: The data of averaged concentrations of heavy metals and fluorine were collected from the Korean Statistical Information Service (KOSIS) and the research papers published. In order to classify the levels of heavy metal concentration, the contamination index, including the contamination factor and the geoaccumulation index, based on the relative ratio of the actual concentration of heavy metals in the soil to the background concentration was calculated. In addition, the distribution of heavy metals in soils was visualized by using the geographic information system (GIS). As a result, the Cd contamination in the soils was the most concerned. CONCLUSION(S): This study very roughly indicated the outline of heavy metal concentration over the whole regions of Korea. The change in heavy metals' concentration over the time should further be monitored and the larger data of heavy metal contamination are needed for better understanding in the future.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

Study on Geological Distribution of Fluorine in Forest Aggregate within Korea (산림골재 내 불소의 지질학적 분포 연구)

  • Yeong-Il Jeong;Kun-Ki Kim;Soon-Oh Kim;Sang-Woo Lee;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.233-241
    • /
    • 2024
  • This study was conducted to investigate the geological distribution characteristics of fluorine in rocks, which can be a major resource of forest aggregates in Korea. Samples of forest aggregates were collected from 224 sites in 22 cities and counties for this study. The national background concentration was 344 mg/kg, which was significantly lower than the average fluorine concentration of crustal, which was 625 mg/kg, and slightly higher than the average fluorine concentration of world soil, which was 321 mg/kg. In terms of region and tectonic structure, fluorine concentrations were investigated to be highest in Gyeonggi-do(394 mg/kg) and Gyeonggi massif(396 mg/kg), respectively. The concentration distribution by the origin of the parent rock was in the order of metamorphic rock(362 mg/kg) > sedimentary rock(354 mg/kg) > igneous rock(328 mg/kg), and the concentration distribution by geologic ages was the highest in the Paleozoic at 394 mg/kg. The concentration distribution by rock types was in the order of diorite(515 mg/kg) > gneisses(377 mg/kg) > schists(344 mg/kg) > phyllite(306 mg/kg) > granites(305 mg/kg) > quartz porphyry(298 mg/kg). Consequently, it is speculated that gneisses and schists, Precambrian metamorphic rocks in the Gyeonggi massif that forms the crust of Gyeonggi-do, contain high fluorine concentrations.

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.