• Title/Summary/Keyword: Fluoride-ion concentration

Search Result 62, Processing Time 0.02 seconds

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

A STUDY ON THE ELIMINATION OF FLUORIDE IN A HOT SPRING WATER

  • Lee, Hyeon-Ki;Kim, Hwan-Gi
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The hot spring water of the north Jeonla province such as Wanggung, Jookrim, Seokjung, and Hwasim, has fluoride concentration of 3.9 mg/L, 12.7 mg/L, 1.9 mg/L, and 6.3 mg/L, respectively. These figures fairly exceed the Korean and WHO standard for potable water, which is 1.5 mg/L. Therefore, in this study, research on elimination of fluoride in a hot spring water of Jookrim region, which has the highest level of fluoride concentration level in the north Jeonla province, was carried out. In analysis of Jookrim hot spring water according to the water quality standard for potable water, pH was very high at 9.25 and the concentration of fluoride was 10 times higher than the standard at 18.2 mg/L. Other measurements were within the standard or not detected. After injecting 10g of activated carbon for elimination of fluoride, the fluoride concentration was measured at 13.5 mg/L, and when 70mL or more of alum 10 g/L solution was injected, the concentration was measured at 2.8 mg/L, and injecting 3g of lime was measured at 9 mg/L. Alum showed the best elimination performance among all individual injections. Injection of 25 mL of activated carbon and 100 mL of alum solution together reduced the fluoride concentration down to 1.3 mg/L, which is under the potable standard. Injection of lime 1g and 75 mL of alum 10 g/L solution together reduced fluoride concentration to 4.1 mg/L. From the modifying HRT, by using ion exchange resin column, the pH was stabilized when HRT was Imin and showed range of $6.7{\sim}7.8$. The fluoride concentration reduced gradually as the HRT increased, and satisfied the potable standard when HRT passed 6 min, and after 30 min HRT, the concentration of fluoride was 0.05 mg/L: almost eliminated.

Effects of Boronic Acid on the Fluoride-selective Chemosignaling Behavior of a Merocyanine Dye

  • Cha, Sun-Young;Jeon, Hye-Lim;Choi, Myung-Gil;Choe, Jong-In;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1309-1313
    • /
    • 2010
  • The effects of boronic acid on the fluoride-selective chemosignaling behavior of a merocyanine dye were investigated. In the presence of phenylboronic acid (PBA), N-methylquinolinium-based merocyanine dye displayed fluoride-selective chromogenic signaling behavior over other commonly coexisting anions in the micromolar concentration range. Signaling is produced by a fluoride-induced displacement of the dye from its complex with PBA, resulting in a significant chromogenic signal for the fluoride ion. This signaling was successfully analyzed using a ratiometric analysis of the UV-vis absorption in response to changes in fluoride ion concentration. A PBA substituted with an electron withdrawing group was found to exhibit a more pronounced signal. Polymer-bound PBA also exhibited useful fluoride-selective signaling behavior.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

THE INFLUENCE OF FLUORIDE ON REMINERALIZATION OF ARTIFICIAL DENTAL CARIES (인공치아우식의 재광화에 미치는 불소의 영향)

  • Han, Won-Seop;Kum, Kee-Yeon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.161-173
    • /
    • 1996
  • The cariostatic effect of fluoride had been established by many epidemiologic and experimental studies. But, there are still different views on the mechnism of cariostasis and remineralization, especially about the proper fluoride concentration. The purpose of this study is to ascertain the remineralization of caries lesion and influence of fluoride concentration which affect remineralization by a study based on dynamic mechanism. The subjects, sound permanent teeth without demineralization or crack, were immersed in lactic acid buffered demineralization solution for 4 days. Dental caries with surface zone and subsurface lesion were artificially produced. All specimens were immersed in lactic acid buffered remineralization solution which had fluoride concentrations of 1 ppm, 2 ppm, 3 ppm for 10days. Final conclusions were obtained by observing the specimens for every 10 days under polarized microscopy. 1. Remineralization of caries lesion as well as demineralization of enamel were produced by changing the degree of saturation of lactic acid buffer solution. 2. Remineralization of caries lesion was facillitated by fluoride ion in lactic acid buffer solution. but, remineralization of the entire caries lesion was not increased as fluoride ion concentration increased.

  • PDF

Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi (구미 불산 누출사고 지점 주변 식물의 불소화합물 농도 분포 및 공기 중 불화수소 농도 추정에 관한 연구)

  • Gu, Seulgi;Choi, Inja;Kim, Won;Sun, Oknam;Kim, Shinbum;Lee, Yungeun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.346-353
    • /
    • 2013
  • Objectives: The goal of this study is to identify the distribution of the foliar fluorine content of vegetation surrounding the area where hydrofluoric acid was accidently released in Gumi, Gyeongsangbuk-do on September 27, 2012. In addition, it also aims to estimate the concentration of hydrogen fluoride in the air on the day of the accident. Methods: Samples of plant leaves were collected on October 7, 2012 within 1 km from the site where the accident occurred. These samples were analyzed for soluble fluorine ion with an ion selective electrode. The ambient concentration of hydrogen fluoride was calculated using the fluoride content in the plant via the dose-rate equation (${\Delta}F$=KCT). Results: The arithmetic and geometric means of the concentrations were 2158.2 and 1183.7mg F $kg^{-1}$ for leaves and, 2.4 and 1.1 ppm HF for the air, respectively. The highest concentration of hydrogen fluoride in the air was 14.7 ppm, which is higher than the maximum concentration reported by the government (1 ppm) and the exposure limit (ceiling, 3 ppm). The concentrations of both fluorine and hydrogen fluoride decreased with increasing distance from the accident site and showed a significant decrease outside of a 500m radius from the site (p <0.05). Conclusions: The area around the accident site was highly polluted with hydrogen fluoride according to the results of this study. Considering the persistency of hydrogen fluoride in the environment, long-term monitoring and environmental impact assessment should be pursued.

Organic Acid Extraction of Fluoride from Antarctic Krill Euphausia superba

  • Xie, Cheng Liang;Kim, Han Soo;Shim, Kil Bo;Kim, Yeon Kye;Yoon, Na Yeong;Kim, Poong Ho;Yoon, Ho Dong
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.203-207
    • /
    • 2012
  • The amount of fluoride removed from Antarctic krill via organic acid extraction depends on the extraction time, concentration, extraction volume, and the nature of the acid itself. The fluoride content in Euphausia superba was determined by measuring the concentration of fluoride ion in acidic extracts using an ion-selective electrode. The best results were obtained by adding 50 mL of 0.01 M citric acid to 0.3-0.5 g of krill and extracting for 5 min. Under these conditions, recoveries of fluoride from frozen whole krill and krill meat were 95.6-99.5% and 97.5-101.3%, respectively. The dry basis fluoride contents of krill by-product, krill meat and the boiled krill were 705, 298, and 575 ppm, respectively. These levels were significantly reduced by citric acid extraction.

A STUDY ON THE FLUORIDE CONTENT OF THE COMMERCIALLY AVAILABLE BEVERAGES AND THE FLUORIDE INTAKE OF CHILDREN (시판되는 각종 음료수내 불소 함량과 소아의 불소섭취에 관한 연구)

  • Lee, Mi-Na;Lee, Sang-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.125-138
    • /
    • 1997
  • Along with recent economic prosperity, the consumption of commercially available beverages has increased dramatically. Beverages on the market are replacing tap water and constituting an increasing large proportion of the total daily fluoride intake. If such changes in the source of fluid intake are not taken into consideration, effective fluoride intake would become difficult in the fluoridated area while there would be confusion as to the basis for proper fluoride supplement prescription in the nonfluoridated area. So, dietary consultation is recommended for every pediatric patient. This study was conducted to provide the reference for dietary consultations on the subject of fluoride supplement using 72 beverages on the market. The fluoride content was measured and the fluoride intake from each age groups was calculated using fluoride ion specific electrode and HMDS-microdiffusion technique. 1. The average fluoride concentration of the 72 beverages was $0.23{\pm}0.10ppm$, from 0.0106ppm to 2.2050ppm. 2. Natural fruit juices, diluted fruit juices, carbonated beverages and mixed beverages showed average fluoride concentration of $0.15{\pm}0.66ppm$, $0.09{\pm}0.11ppm$, $0.15{\pm}0.23ppm$, $0.50{\pm}0.66ppm$, respectively. There were significant differrence between diluted friut juice drinks and mixed beverage, and between the carbonated beverages and mixed beverges(p<0.05). 3. Using available data on the daily total consumption of beverages and the relative consumption of beverages on the market according to age, daily fluoride intake for various age groups was calculated. According to the results, 2 to 3 year-old children need 0.13mgF/day, those between 4 and 6 year-old need 0.15mgF/day, and those between 7 and 10 year-old need 0.17mgF/day.

  • PDF