• Title/Summary/Keyword: Fluorescent Lamps

Search Result 381, Processing Time 0.041 seconds

Screening of Freshwater Microalgae for Resistance to Ultraviolet Radiation (자외선 차단능을 보유한 미세조류의 스크리닝)

  • Han, Mi-Ae;Han, Hye Jin;Jung, Moon Hee;Yoo, Rim Hwan;Hwang, Chae Eun;Myung, Su Hyun;Son, Yun Jin;Yoon, Young-Sil;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.131-137
    • /
    • 2014
  • Ultraviolet-B radiation (UV-B) in sunlight causes biological damages such as erythema and blister on skin. Microalgae have been in the limelight as an attractive feedstock for manufacturing functional materials. This study focused on screening microalga with protection ability against UV-B. The microalgae were isolated from local areas on April to June 2013 as well as June 2014. The cells were grown under continuous illumination from fluorescent lamps at $136.3{\pm}2.2{\mu}E/m^2/s$ in BG-11 medium at $15^{\circ}C$ for 12-14 days. The selected cells were spread on BG-11 agar and were exposed to UV-B (312 nm) for 20 and 25 minutes. The 13 strains among selected algae were classified. Among these, 9 strains were Scenedesmus sp. and the remains were Chlorella sp. Based on this study, it seems that Scenedesmus sp. and Chlorella sp. have resistibility against ultraviolet. These results will help to study on UV protection using microalgae.

A Study of the Inverter Optimization Design for EEFL BLU (EEFL BLU 구동용 인버터 최적화 설계에 대한 연구)

  • Kim, S.B.;Lee, S.H.;Kang, J.G.;Cho, M.R.;Shin, S.W.;Lee, S.H.;Hwang, M.K.;Yang, S.Y.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.241-245
    • /
    • 2006
  • EEFL(External Electrode Fluorescent Lamp) for LCD displays are analyzed on electrical and optical characteristics by various electrode length. The electrodes of EEFL are coated at the outside of the glass tube. Brightness and efficiency of the EEFL are affected on lamp impedance characteristic. So, the experimental models are proposed for analysis and measurements of the brightness and efficiency of the lamps according to the electrode length. The sample of LCD backlight unit is used for these experiments, EEFL arrayed BLU of 32' for commercial TV display. The parameters of the experiments were quantised for simple result reading as the length of electrodes as 15, 23 and 30 mm. The inverter was designed and manufactured in the laboratory as the Full-Bridge switching inverter. The feature of the output were measured on voltages about 1000 - 1400V at the currents of 11 - 29 mA and the brightness $15,000\;cd/m^2-40,000\;cd/m^2$. The experiments have shown that the brightness are increased by increasing of the electrode lengths which have the lamp currents increased. But at an certain conditions, the brightness and efficiency were decreased because of unmatched between the inverter output and lamp impedance. The optimum applications of the EEFL BLU of 32' in this experiments have been shown to choose the parameters for driving frequencies of 100 kHz - 150 kHz, the brightness of $18,000-19,000\;cd/m^2$ and efficiencies of 40 - 45 lm/w.

  • PDF

Yellowing Inhibition of Bagasse Chemimechanical Pulp

  • Andulkhani Ali;Mirshokraie Seyed Ahmad;Latibari Ahmad Jahan;Enayati Ali Akbar
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.337-347
    • /
    • 2006
  • Papers made from unbleached and bleached bagasse chemimechanical pulp were chemically modified by acetylation. The effects of irradiation on unbleached and bleached also reduced papers of bagasse chemimechanical pulp before and after acetylation were investigated in this study. Chemimechanical pulp was prepared from bagasse and then bleached with hydrogen peroxide. Unbleached and hydrogen bleached pulps were reduced by Sodium borohydride in different procedures. Paper sheets were prepared from pulps and then acetylated using a technical grade of acetic anhydride. Accelerated photo-aging was run on the samples using fluorescent lamps to verify photo-stability of paper sheets before and after pretreatments. Brightness reversion (as Post-color number) and other optical properties of the paper sheets were measured. Efficient inhibition of photo-yellowing of papers made from bagasse CMP was achieved by acetylation. The acetylated unbleached CMP was noticeably photo-bleached during irradiation. Sodium borohydride reduction followed by acetylation had the same effect as acetylation alone at the same degree of reaction time and reductive treatment did not affect the yellowing rate to any great extent. The pre-reduced, acetylated unbleached papers were, however, not brightened during irradiation. Calculation done by Kubelka-Munk equation showed that reductive treatment had little effect in reducing the photo-yellowing of paper made from CMP pulp; a small stabilization effect was observed in the case of bleached CMP, while unbleached CMP was slightly more prone to discolor in the later phase of photo-reversion. The improved stability towards light may was closely related to the decrease in the phenolic hydroxyl content as a result of blocking by acetyl groups during treatment with acetic anhydride. The results support the hypothesis that phenolic hydroxyl has an important role in the process of photo-reversion of high-yield pulps. The results obtained in this study demonstrate that the acetylation of paper manufactured from peroxide bleached Bagasse CMP significantly retards light-induced discoloration. The inhibition of yellowing is connected with a decrease in the phenolic hydroxyl content of both unbleached and peroxide bleached papers.

  • PDF

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

Growth of Kale Seedlings Affected by the Control of Light Quality and Intensity under Smart Greenhouse Conditions with Artificial Lights (인공광 스마트온실에서 광질 및 광강도 제어가 케일 실생묘의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Jae-Su;Lee, Gong-In;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • BACKGROUND: Plant growth under smart greenhouse (that is plant factory system) conditions of an artificial light type is significantly depending on the artificial light sources such as a fluorescent lamps or Light-Emitting Diodes (LEDs) with specific spectral wavelengths regardless of the outside environmental changes. In this experiment, characteristics on the growth and compound synthesis of kale seedlings affected by light qualities and intensities provided by LEDs were mentioned. METHODS AND RESULTS: The kale seedlings which developed 3~4 true leaves were exposed by fluorescent lamps or LEDs lights of red (R), blue+white (BW), blue+red (BR) with 50 (L) or $100(H){\mu}mol/m^2/s^1$ photosynthetic photon flux (PPF) under hydroponic culture system of deep flow technique for 50 days. Shoot fresh weight increased under the RH, BWH, and BRH treatments with higher PPF. Shoot elongation of the seedlings decreased, and polyphenol synthesis promoted by the higher light intensity conditions. Sugar synthesis in the leaves was above 2 times greater under the RH treatment of monochromic red light quality with $100{\mu}mol/m^2/s^1\;PPF$ than $50{\mu}mol/m^2/s^1\;PPF$. CONCLUSION: The results show that the control of light quality and intensity in the smart greenhouse conditions with artificial lights significantly affects the growth and compound synthesis in the fresh kale leaves with higher culture efficiency compared to the conventional soil culture under greenhouse or field conditions. Researches on the optimum light intensities of the LEDs with special spectral wavelengths are necessary for maximum growth and metabolism in the seedlings.

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Autotrophic Growth of Limonium spp. 'Ocean Blue' Plantlets In Vitro as Affected by PPF, NAEH and $\textrm{CO}_2$ Concentration (스타티스 ‘오션 블루’의 자가영양배양시 광도, 환기횟수 및 $\textrm{CO}_2$ 농도가 소식물체의 기내 생육에 미치는 영향)

  • 정기원;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • Growth and development of Limonium spp.‘Ocean Blue’plantlets were studied under three levels of photosynthetic photon flux (PPF),70,150 and 220 $\mu$mol. $m^{-2}$ . $s^{-1}$ , two levels of $CO_2$ concentration, 500 and 1000 $\mu$mol. $m^{-1}$ , and two levels of number of air exchanges per hour (NAEH),0.1 $h^{-1}$ and 2.8 $h^{-l}$. Explants were obtained from photomixotrophically-micropropagated plantlets. Four explants per vessel were cultured under cool-white fluorescent lamps for 16 h. $d^{-1}$ at 25$\pm$11$^{\circ}C$ and 70~80% relative humidity. In treatments of 2.8 $h^{-1}$ NAEH, a 10 mm round hole made on the vessel cap was sealed with a microporous filter and two $CO_2$ concentrations in the culture rooms were provided from a liquefied $CO_2$ tank. Fresh and dry weights, height, length of the longest root, number of loaves, and leaf area significantly increased with increasing PPF and especially, $CO_2$ concentration. Growth was enhanced by a 2.8 $h^{-1}$ NAEH. Overall, treatment with a 220 $\mu$mol. $m^{-2}$ . $s^{-1}$ PPF and a 1000 $\mu$mol. $m^{-1}$ $CO_2$ resulted in the most vigorous growth of Limonium spp. ‘Ocean Blue’ plantlets.s.

Implementation of AC Direct Driver Circuit for Ultra-slim LED Flat Light System (초슬림 LED 면조명 기구용 교류 직결형 구동 회로 구현)

  • Cho, Myeon-Gyun;Choi, Hyo-Sun;Yoon, Dal-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4177-4185
    • /
    • 2012
  • LEDs are becoming the most suitable candidate replacing traditional fluorescent lamps because of its eco-friendly characteristics. LEDs are also actively used to design green building system and to make outdoor billboard as a back-light system due to its high energy efficiency. In this paper, we have developed AC direct driver for $12{\times}12$ FLB(flexible LED board) and LED flat light without SMPS. It has LID-PC-R101B driver IC that can support the high power factor and be composed of LED switching circuit in group. Also, an elaborate system designs can guarantee a high luminous efficiency, a high reliability and a low power consumption. The proposed FLB has the ultra slim shape of $450{\times}450$ mm, width of 4 mm and weight of 280 g. In the end, we have developed a prototype of FLB for billboard and flat light for room lighting with AC direct driver iposrder to verify the performance of the proposed system.

Improvement of Runner Plant Production by Increasing Photosynthetic Photon Flux during Strawberry Transplant Propagation in a Closed Transplant Production System (폐쇄형 육묘 시스템에서 딸기의 러너플랜트 생산 증진에 적합한 광합성유효광량자속)

  • Kim, Sung-Kyeom;Jeong, Mi-Seon;Park, Seon-Woo;Kim, Moo-Jung;Na, Hae-Young;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.535-539
    • /
    • 2010
  • The formation and elongation of runners, growth of runner plants, and transplant propagation rates of 'Maehyang' strawberry were investigated at various photosynthetic photon flux (PPF) levels. Strawberry plants having $3.1{\pm}0.4$ leaves and $7.0{\pm}1.1mm$ of crown diameter were used as propagules and were cultured for 35 days in 9 transplant production modules using fluorescent lamps as artificial lighting sources. Applied PPF levels were $137.4{\pm}2.1$, $217.0{\pm}1.0$, and $274.7{\pm}8.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as measured on the surfaces of empty shelves. The numbers of runners and runner plants per propagule were the greatest at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF. The runner plant propagation rate was 0.27 plant/day/propagule at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, which was significantly greater than that of conventional propagation methods. Results indicate that high PPF levels promotes the formation of runners and runner plants of strawberry and that the rapid propagation method with high PPF levels can be feasible for production of vigorous transplants in a closed transplant production system.