• Title/Summary/Keyword: Fluorescence sensing

Search Result 87, Processing Time 0.03 seconds

Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems

  • Selvamani, Vidhya;Ganesh, Irisappan;Chae, Sowon;Maruthamuthu, Murali kannan;Hong, Soon Ho
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.24-31
    • /
    • 2020
  • Five genes (mxbDM, mxcQE and mxaB) are responsible for the transcription of methanol oxidation genes in Methylobacterium strains. Among these, MxbDM and MxcQE constitute the two-component system (TCS) regulating methanol metabolism. In this study, we integrated the methanol-sensing domain of MxbD and MxcQ with the EnvZ/OmpR from Escherichia coli. The domain-swapping strategy resulted in chimeric histidine kinases (HK's) MxbDZ and MxcQZ AM1 containing recombinant E. coli. Real-time quantitative PCR was used to monitor OmpC expression mediated by the chimeric HK and response regulator (RR) OmpR. Further, an ompC promoter based fluorescent biosensor for sensing methanol was developed. GFP fluorescence was studied both qualitatively and quantitatively in response to environmental methanol. GFP measurement also confirmed ompC expression. Maximum fluorescence was observed at 0.05% methanol and 0.01% methanol using MxbDZ and MxcQZ AM1, respectively. Thus the chimeric HK containing E. coli were found to be highly sensitive to methanol, resulting in a rapid response making them an ideal sensor.

Fluorescence Sensing Properties of Thiazolobenzo-crown Ether Incorporating Coumarin

  • Lee, Sang-Hoon;Helal, Aasif;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.615-619
    • /
    • 2010
  • A new coumarin-thiazolobenzo-crown ether based fluorogenic chemosensor BTC (1) was reported. The ion-selective binding properties of 1 with different alkali, alkaline earth metals and transitional metals were investigated in an ethanol-DMSO system. BTC (1) showed the highest binding constant toward $Hg^{2+}$ over $Ag^+$, $Pb^{2+}$ and $Cu^{2+}$.

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A;Park, June-Min
    • 한국염색가공학회지
    • /
    • 제24권3호
    • /
    • pp.158-164
    • /
    • 2012
  • Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.

Chicken Disease Characterization by Fluorescence Spectroscopy

  • Kang S.;Kim M. S.;Kim I.
    • Agricultural and Biosystems Engineering
    • /
    • 제5권1호
    • /
    • pp.25-29
    • /
    • 2004
  • Fluorescence spectroscopy was used to characterize chicken carcass diseases. Spectral signatures of three different disease categories of poultry carcasses (airsacculitis, cadaver and septicemia) were obtained from fluorescence emission measurements in the wavelength range of 360 to 600 nm with 330 nm excitation. Principal Component Analysis (PCA) was used to select the most significant wavelengths for the classification of poultry carcasses. These wavelengths were analyzed for pathologic correlation of poultry diseases. Using a Soft Independent Modeling of Class Analogy (SIMCA) of principal components with a Mahalanobis distance metric, poultry carcasses were individually classified into different classes with $97.9\%$ accuracy.

  • PDF

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

원거리의 물과 오일을 구별할 수 있는 UV형광측정시스템 개발과 분석에 대한 연구 (Long Distance Identification of Water and Oil using an Ultraviolet Fluorescence Measurement System)

  • 백경훈;이준석;전수정;박보람;박성욱
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.266-270
    • /
    • 2022
  • Owing to the rising volume of seaborne trade, oil spills damage the marine environment for over 250 yearly. Thus, various analysis methods such as the Fourier-transform infrared (FTIR), Raman spectroscope, and gas chromatography are used to monitor oil spills at sea, but these methods are expensive. Recently, to reduce operational costs, an underwater fluorometer was adopted. However, this approach is not ideal for the remote sensing of oil spills because the device gets submerged in the sea. In this study, we have designed and developed a monitoring system that uses ultraviolet fluorescence to detect spilled oil or water from a distance, as well as proposed an analyzing method defining based on water Raman signal and QF535. Each fluorescence spectrum of water, oil (crude oil), and Bunker A was obtained using the system, and was calculated and analyzed from the spectrum individually. Based on the results of the analysis, we could successfully identity water and oil at a long distance.