• Title/Summary/Keyword: Fluidized reactor

Search Result 262, Processing Time 0.025 seconds

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

Properties of Carbon Black Used as Catalysts for Methane Decomposition

  • Kim, Myung-Soo;Han, Ling;Dai, Shuangye;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2006
  • Direct decomposition of methane over three types of carbon black (N330-p, N330-f, and HI-900L) was carried out in a fluidized bed quartz reactor. Properties of carbon black before and after reaction were measured and found to be related with surface structure and weight gain. For N330-p and N330-f, some carbon deposit on the surface was considered to be the reason for the increase of BET surface area and pore volume with weight gain. Carbon deposits on the surface and the conglutination of some aggregates may explain the slight increase of particle size. Properties of HI-900L changed much more significantly with weight gain. It is supposed that the increase of aggregate size of HI-900L were due to some unknown oily components. The corresponding agglomeration might be the reason for the decrease of BET surface area with weight gain, as compared with the increase of that for the case of N330 black.

APPLICATION OF A PILOT-SCALE FLUIDIZED-BED REACTOR FOR THE DECONTAMINATION OF GROUNDWATER

  • Ohlen, Ken;Lee, Seong-Taek;Hegemann, Wemer;Jang, Yong-Geun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Groundwater, contaminated predominantly with aromatic compounds and chlorinated ethylene, could be biologically treated in a fluidized-bed reactor with immobilized cells. The decomposition efficiency for the aromatics was over 90% at the retention time of 2.5 h. The chlorinated ethylenes, especially trichloroethylene (TCE) and cis-dichloroethylene (DCE), could be decomposed only insufficiently. No anaerobic methane formation was observed for this groundwater even at a very low dissolved oxygen (DO) concentration of 0.75 mg/L. The variation of DO concentration resulted in an optimal value of 1.5 mg/L. The recycle of air waste could increase the utilization of oxygen. The amount of low boiling pollutants stripped out remained constant with the recycle, while for the higher boiling pollutants the stripping slightly increased. Using air instead of oxygen increases the flow rate of air waste, which is connected to a higher stripping of pollutants. In this investigation, the pollutant concentration in the air waste remained constant. The stripping of main pollutants did not exceed 0.3 %.

  • PDF

Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor (케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향)

  • KIM, JUNGHWAN;BAE, DAL-HEE;BAEK, JEOM-IN;PARK, YEONG-SEONG;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.

Production of Carbon Using Carbonization of Rice Husk in a Fluidized Bed Reactor (유동층반응기에서 왕겨 탄화를 이용한 탄소체 제조)

  • Peng, Meimei;Han, Seung-Dong;Lee, Joo-Bo;Lee, Sung-Yong;Jeong, Ui-Min;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.309-312
    • /
    • 2010
  • 본 연구에서는 유동층반응기를 이용하여 왕겨의 탄화반응을 수행하였다. 탄화반응은 내경 40mm, 높이 1.8m의 유동층을 사용하였으며, 분산판은 다공성 스테인레스스틸을 사용하였다. 탄화반응은 질소를 이용하여 수행하였다. 왕겨 주입입자 크기는 직경 2.0mm, 0.715mm, 0.359mm, 0.194mm를 각각 사용하였으며, 유동층의 온도는 $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 탄화특성을 측정하였다. 또한 유동층의 매질로는 직경 1.0mm의 Co-Mo-Fe/$Al_2O_3$ 촉매를 사용하였으며, 탄화물은 유동층상부에 설치된 사이크론에 의하여 포집 분리 되었다. 탄화온도, 유속, 입자크기 등 조업변수에 따른 생성 탄소체의 물성을 규명하여 최적 조업조건을 제시하였다.

  • PDF

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor (유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구)

  • Kim, Woo Sik;Youm, Kyung Ho;Kim, Eung Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF

Stable Fermentative Hydrogen Production by Polyvinyl Alcohol (Pva) Gel Beads Fluidized Bed Reactor

  • Nakao, Masaharu;Kawagoshi, Yasunori;Hino, Naoe;Iwasa, Tomonori;Furukawa, Kenji
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • A novel hydrogen fermentation technique by using polyvinyl alcohol (PVA) gel beads as a biomass carrier was investigated. The hydrogen gas was stably produced throughout the experimental period in a continuous reactor. Even though the hydrogen productivity was suddenly decrease by experimental troubles, the bacteria attached to the PVA gel beads played as an inoculum, it was promptly recovered. The hydrogen yield per glucose was not very high ($1.0-1.2mol-H_2/mol-glucose$), thus the optimization of the experimental conditions such as ORP and HRT should be considered to improve the hydrogen productivity. Bacterial community was stable during experimental period after the PVA gel beads applying, which indicated that applying of biomass carrier was specific to keep not only the biomass but also the bacteria commonly. Clostridium species were phylogenetically detected, which suggested that these bacteria contributed to the hydrogen production in the biofilm attached to the PVA gel beads.

  • PDF

Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

Recovery of Gold from Refractory Arsenic Gold Concentrate by a Process of Thiobacillus Ferrooxidans Oxidation - Cyanidation

  • Zhang, Chuanfu;Min, Xiaobo;Chai, Liyuan;Chen, Weiliang;Okido, Masazumi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.159-164
    • /
    • 2001
  • A novel fluidized-bed reactor was designed and installed for bioleaching in a semi-continuous way, by which a process for bioleaching-cyanidation of Guangxi Jinya refractory gold arsenical concentrate was studied. An arsenic extraction rate reaches 82.5% after 4-day batch biooxidation of the concentrate under the optimized condition of pH 2.0, ftrric ion concentration 6.5g/L and pulp concentration 10%. And leaching rate of gold in the following gold cyanidation is over 90%. The parameters of three series fluid-bed reactors exhibit stability during the semi-continuous bioleaching of the concentrate. Arsenic in the concentrate can be got rid of 91% after 6-day leaching. Even after 4 days, 82% of arsenic extraction rate was still obtained. The recovery rates of gold are 92% and 87.5% respectively in cyaniding the above bioleached residues. The results will provide a base for further commercial production of gold development.

  • PDF