• Title/Summary/Keyword: Fluidized bed pyrolysis

Search Result 52, Processing Time 0.016 seconds

Process Simulation and Economic Feasibility of Upgraded Biooil Production Plant from Sawdust (톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석)

  • Oh, Chang-Ho;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.496-523
    • /
    • 2018
  • The objective of this study is to evaluate the economic feasibility of two fast pyrolysis and biooil upgrading (FPBU) plants including feed drying, fast pyrolysis by fluidized-bed, biooil recovery, hydro-processing for biooil upgrading, electricity generation, and wastewater treatment. The two FPBU plants are Case 1 of an FPBU plant with steam methane reforming (SMR) for $H_2$ generation (FPBU-HG, 20% yield), and Case 2 of an FPBU with external $H_2$ supply (FPBUEH, 25% yield). The process flow diagrams (PFDs) for the two plants were constructed, and the mass and energy balances were calculated, using a commercial process simulator (ASPEN Plus). A four-level economic potential approach (4-level EP) was used for techno-economic analysis (TEA) under the assumption of sawdust 100 t//d containing 40% water, 30% equity, capital expenditure equal to the equity, $H_2$ price of $1050/ton, and hydrocarbon yield from dried sawdust equal to 20 and 25 % for Case 1 and 2, respectively. TCI (total capital investment), TPC (total production cost), ASR (annual sales revenue), and MFSP (minimum fuel selling price) of Case 1 were $22.2 million, $3.98 million/yr, $4.64 million/yr, and $1.56/l, respectively. Those of Case 2 were $16.1 million, $5.20 million/yr, $5.55 million/yr, and $1.18/l, respectively. Both ROI (return on investment) and PBP (payback period) of Case 1(FPBU-HG) and Case 2(FPBU-EH) were the almost same. If the plant capacity increases into 1,500 t/d for Case 1 and Case 2, ROI would be improved into 15%/yr.

Pollutants Behavior in Oxy-CFBC by Application of In-Furnace deSOx/deNOx Method (순산소 순환유동층에서 로내 탈황 및 탈질법 적용에 따른 오염물질 거동특성)

  • Choi, Gyung-Goo;Na, Geon-Soo;Shin, Ji-Hoon;Keel, Sang-In;Lee, Jung-Kyu;Heo, Pil-Woo;Yun, Jin-Han
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.212-220
    • /
    • 2018
  • Oxy-fuel combustion is considered as a promising greenhouse gas reduction technology in power plant. In this study, the behaviors of NO and $SO_2$ were investigated under the condition that in-furnace $deNO_x$ and $deSO_x$ methods are applied in oxy-fuel circulating fluidized bed combustion condition. In addition, the generation trends of $SO_3$, $NH_3$ and $N_2O$ were observed. For the purpose, limestone and urea solution were directly injected into the circulating fluidized bed combustor. The in-furnace $deSO_x$ method using limestone could reduce the $SO_2$ concentration in exhaust gas from ~403 to ~41 ppm. At the same experimental condition, the $SO_3$ concentration in exhaust gas was also reduced from ~3.9 to ~1.4 ppm. This trend is mainly due to the reduction of $SO_2$. The $SO_2$ is the main source of the formation of $SO_3$. The negative effect of $CaCO_3$ in limestone, however, was also appeared that it promotes the NO generation. The NO concentration in exhaust gas reduced to ~26 - 34 ppm by appling selective non-catalytic reduction method using urea solution. The $NH_3$ concentration in exhaust gas was appeared up to ~1.8 ppm during injection of urea solution. At the same time, the $N_2O$ generation also increased with increase of urea solution injection. It seems that the HNCO generated from pyrolysis of urea converted into $N_2O$ in combustion atmosphere. From the results in this study, the generation of other pollutants should be checked as the in-furnace $deNO_x$ and $deSO_x$ methods are applied.