• Title/Summary/Keyword: Fluidity Concrete

Search Result 497, Processing Time 0.026 seconds

Fluidity of Super Flow Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 초유동 콘크리트의 유동성)

  • Sung, Chan-Yong;Park, Il-Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.55-61
    • /
    • 2005
  • This study was performed to evaluate fluidity of super flow concrete using recycled coarse aggregate. The unit weight was $2,246{\sim}2,344\;kg/m^3$, the unit weights of these concrete were decreased with increasing the content of fly ash and recycled coarse aggregate. The slump flow was $58{\sim}63\;cm$, the Box type passing was $3.4{\sim}6.8\;cm$, respectively. The L type compacting was excellent in the fly ash content $10\%\;and\;20\%$, but, it was showed in good in the fly ash content $30\%$. The super flow concretes using recycled coarse aggregate were improved by substitution in the range of less than the fly ash content $20\%$ and recycled coarse aggregate content $75\%$. This recycled coarse aggregate can be used for super flow concrete.

The Study on Fluidity and Strength Properties of High Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 고강도콘크리트의 유동성 및 강도특성에 관한 연구)

  • Shin, Hong-Chol;Park, Sang-Joon;Ahn, Nam-Shik;Lee, Eui-Hak;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.383-386
    • /
    • 2005
  • This paper is to investigate the effect of W/B, blend ratio of crushed sand with sea sand on fluidity and strength properties of high strength concrete utilizing crushed sand. W/B set up 0.25, 0.30, 0.35 and the blend ratio of crushed sand with sea sand set up 0:100, 30:70, 50:50, 70:30, 100:0 The results of this study are summarized as the follows; 1) The increase of the blend rate of crushed sand, affected on the enhancement of flow, the increase of dosage of SP and water content, but the decrease S/a 2) Compressive strength is increased when crushed sand $30\~70\%$ was replaced with sea sand. 3) The optimal replacement percentage of crushed sand is $50\%$ with sea sand.

  • PDF

A Study of Rheological Properties on Paste and Mortar for Pumpable under High Pressure (고압송용 페이스트 및 모르타르의 레올로지 특성에 관한 연구)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Kim, Young-Jin;Kim, Young-Jic;Kim, Kyung-Hwan;Park, Man-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.393-394
    • /
    • 2010
  • This paper was examined the plastic viscosity and yield stress of paste and mortar on the part of the research to develop low viscosity and high fluidity concrete for high pumpability. Through this study, we examined the suitable material properties of paste and mortar to low viscosity and high fluidity concrete for high pumpability.

  • PDF

Study on plain concrete crack reduction characteristics by fiber type (섬유보강재 종류에 따른 무근콘크리트 균열저감 특성에 관한 연구)

  • Lee, Ji-Hwan;Yun, Chang-Yeon;Park, Gi-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.178-179
    • /
    • 2022
  • This study evaluated the crack reduction characteristics of concrete by type of fiber reinforced concrete. As a result of the experiment, it was shown that the fluidity decreased due to the mixing of the fiber reinforcing material. The higher the amount of fiber reinforced material used, the higher the decrease in fluidity. It was confirmed that the tensile strength was improved by the mixing of the fiber reinforcing material. The selection of fiber reinforcement has a great influence on the crack reduction effect.

  • PDF

Effect of the Nylon and Cellulose Fiber Contents on the Mechanical Properties of the Concrete (나일론 및 셀룰로스 섬유 혼입률 변화가 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Cheon-Goo;Han, Min-Cheol;Shin, Hyun-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.83-90
    • /
    • 2007
  • This study is to investigate the effects of nylon(NY) and cellulose(CEL) fiber contents on the mechanical properties of the concrete. The results were summarized as following. Test showed that increase of NY and CEL fiber contents decreased fluidity of fresh concrete, so the loss of the fluidity would be considered when they were over added. Air contents were slight increased, but they satisfied the target air content. Bleeding capacity of concrete containing fiber significantly was declined. In addition, concrete containing higher amounts of fiber retarded setting time remarkably. Plastic shrinkage crack was reduced with the use of fiber due to increasing fiber contents and changing fiber classes, and NY fibers to prevent the plastic shrinkage crack effectively. Compressive and tensile strength of almost specimens were increased when air contents of the fresh concrete were fixed according to fiber contents, and flexural strength was increased according to fiber contents. For the impact strength of specimens, the specimen containing $0.6kg/m^3$ of NY fibers, showed the most favorable impact strength, The fiber reinforced concrete using NY fibers exhibited superior mechanical performance, and it was considered that $0.6kg/m^3$ of was desirable as the most favorable adding amount.

Evaluation of Optimum Mix Proportion and Filling Performance of High-fluidity Concrete for SCP Module charging (SCP 모듈 충전용 고유동 콘크리트의 최적배합 도출 및 채움성능 평가)

  • Park, Gi-Joon;Kim, Sung-Wook;Park, Jung-Jun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.452-459
    • /
    • 2017
  • In recent years, to reduce self-weight of structural elements, the use of SCP (Steel Concrete Plate) instead of prestressed concrete is increasing. Because SCP has a complicated sectional shape and includes a large number of studs, the use of high-fluidity concrete is required. Therefore, in this study, to prevent the restrained shrinkage behavior by the stud, the effects of using an expansive agent (EA) and shrinkage reducing agent (SRA) were investigated, and the optimal mixture proportions to maximize the filling capacity were determined based on the fine aggregate ratio. The test results indicated that the combined use of EA and SRA exhibited the smallest shrinkage. The ratio of the crushed sand and washed sea sand was determined to be 5:5, and the proper fine aggregate ratio was found to be 55.6%, because when the ratio was too high, a decrease in strength and an increase in shrinkage strain were expected. The high-fluidity concrete effectively filled the large-sized SCP module.

The Fluidity of High Flowing Concrete According to the Component Ratio of Superplasticizer (고성능감수제 구성비율에 따른 고유동콘크리트의 유동특성)

  • Kim Moo-Han;Kim Yong-Ro;Kim Jae-Hwan;Ho Jang-Jong;Lee Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.147-154
    • /
    • 2004
  • It is the aim of this study to propose the fundamental data for the establishment of the application and qualify standard of the mixed type superplasticizer after investigating and comparing the fluidity of high flowing concrete according to the component ratio of superplasticizer such as naphthalene sulfonated and melamine sulfonated. The results of this study were shown as the followings; 1) The fluidity and adsorption ratio of cement-paste were improved according to the increasing of naphthalene sulfonated component ratio, and apparent viscosity of cement-paste was improved according to the Increasing of melamine sulfonated component ratio. 2) In case of using the granulated blast-furnace slag, the fluidity of cement-paste was considerably good and the adsorption ratio was decreased and in case of using fly-ash, the apparent viscosity and adsorption ratio of cement-paste were improved. 3) The dispersive capacity performance of concrete can be improved by means of the increasing of naphthalene sulfonated component ratio. Also the viscosity and early strength can be improved by means of the increasing of melamine sulfonated component ratio.

A Fundamental Study of Metakaolin as a Pozzolanic Material (콘크리트 혼화재료로서의 메타카올린의 기초적인 특성 연구)

  • 김용태;안태호;강범구;이정율;김병기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.281-286
    • /
    • 2001
  • The utilization of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This paper estimates the fundamental properties of metakaolin as a pozzolanic material in view of fluidity and compressive strength of cement paste and mortar in comparison of silica fume, fly ash and slag. The results show that in order to obtain the same initial fluidity, metakaolin needs higher dosage of PNS superplasticizer than fly ash and slag, however, less dosage than silica fume. In view of compressive strength of mortar, metakaolin exhibits much higher compressive strength than fly ash and slag, and similar compressive strength with silica-fume when 10 % of cement is replaced with a pozzolanic material.

  • PDF

A Study on the Dispersion Effects and Slump for Elapsed Time of Cement Admixed with Naphthalene Sulfonated Condensate and Maleic Anhydride Copolymer (나프탈렌술폰산축합물과 무수말레인산계 공중합체를 첨가한 시멘트의 분산효과 및 경시변화에 관한 연구)

  • 김도수;김은영;홍성수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.94-99
    • /
    • 1995
  • Naphthalene sulfonated condensatd(NSF) has been widely using for the superplasticizing of ement and concrete. But NSF has a very large mobility loss with elapsed tiom. To retain mobility of NSF during a certain time, maleic anhydride and acrylic acid copolymer(MA) was polymerized and mixed with NSF in order to perpare admixture holding mobility-retention property of cement. By applying this admixture for ement paste, we examined the fluidity and mobility retention property as a function to elapsed time and measured the compressive strength of mortar with curing time. As a result, NSF containing 20wt% of MA showed very excellent fluidity and mobility-retention property. These properties were affected by the added amount of admixture and the ratio of water to cement.

  • PDF

Influence of Various Chemical Admixtures on Rheological Properties of Cement Paste (혼화제가 시멘트 페이스트의 레오로지 성상에 미치는 영향)

  • Heo Young Sun;Kim Jong;Shin Jae Kyung;Yoon Seob;Lee Gun Cheol;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.675-678
    • /
    • 2005
  • Cement paste is originally the basic material and crucial factor consisting concrete. This study investigates the relationship between flow apparatuses, which are ring flow, flow cone and mini slump, in order to estimate the fluidity of cement paste. For quantitatively evaluating the measured data, this study also analyses the calibration of the rheology consistents of cement paste using viscometer. For this purpose, the present work discusses the influence of the differences of companies and ingredients, affecting the fluidity of cement paste

  • PDF