• Title/Summary/Keyword: Fluidic

Search Result 246, Processing Time 0.081 seconds

In-situ Patterning of Magnetic Particles in Microfluidic Channels by Forward/Reverse Local Magnet Arrangement (국소 자기장의 순/역 배열을 이용한 미세유체 채널 내에서의 강자성 입자 패턴 형성)

  • Park, Hyoun-Hyang;Lee, Ji Hae;Yoo, Yeong Eun;Kim, Jung-Yup;Chang, Sunghwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • The patterning of microbead in microfluidics channel is a practical technique for application in bio and medical areas. An approach is described for a direct patterning of magnetically active microbeads in microfluidic devices without inner structure. Local magnet arrangements - flat arrangement and stack arrangement - contacting same poles or opposite poles of magnet were utilized for generating trapping magnetic fields. The arrangement of magnets contacting same poles generated isolated patterns by repelling of magnetic field. The flat arrangement of vertically reverse magnet arrays shaped trapping patterns repelling magnetic field line between same poles. Spatially, the stack compositions of magnet arrangements allow diverse isolated trapped patterns of magnetic particles. Trapped magnetic particles in fluidic channels were stable on the $18m{\ell}/hr$ flow conditions and magnetic force of 1.08 mT in the all experiments. This experimental study suggests the simple and versatile methods to pattern magnetic particles, and has potential of wide application to bio and medical area.

A Study of the Fluidic Characteristics of High-Pressure Fuel Pumps for GDI Engines (GDI 고압펌프의 유동특성에 관한 연구)

  • Lee, Sangjin;Noh, Yoojeong;Liu, Hao;Lee, Jae-Cheon;Shin, Yongnam;Park, Yongduk;Kang, Myungkweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • A high-pressure fuel pump is a key component in a gasoline direct injection (GDI) engine; thus, understanding its flow characteristics is essential for improving the engine power and fuel efficiency. In this study, AMESim, which is a hydraulic analysis program, was used to analyze the performance of the high-pressure fuel pump. However, since AMESim uses a one-dimensional model for the system analysis, it does not accurately analyze the complicated flow characteristics. Thus, Fluent, computational fluid dynamics (CFD) software, was used to calculate the flow rates and net forces at the intake and discharge ports of the high-pressure fuel pump where turbulent flow occurs. The CFD analysis results for various pressure conditions and valve lifts were used as look-up tables for the AMEsim model. The CFD analysis results complemented the AMEsim results, and thus, improved the accuracy of the performance analysis results for the high-pressure fuel pump.

Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor (연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석)

  • Choi, Jungwoon;Lee, Sunil;Park, Ki-Jung;Seo, KyoungWoo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • The domestic unique research reactor, HANARO (Hi-flux Advanced Neutron Application ReactOr), has been constructed with the open-pool, the core is submerged in, for the multi-purpose neutron application. The reactor has a primary cooling system to remove the fission heat from the core and its connected fluidic systems. Since the works are required at the reactor pool top as a characteristic of the research reactor, the radiation shall be minimized with the operation of the hot water layer system to avoid unnecessary radiation exposure on the workers during work at the pool top. Moreover, the pool water management system is connected to the reactor pool to maintain the pool temperature below $50^{\circ}C$ to minimize the uprising radioactive gas or impurity from the colder pool bottom. For the efficient flow rate of the PWMS, the thermal capacity of heat exchanger is selected with 260 kW in the normal operation condition. In this paper, the modeling is formulated to figure out whether or not each pool temperature maintains below the temperature limit and the calculation results show that the designed PWMS heat exchanger has enough capacity with the design margin regardless of the reactor operation mode.

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF

Solar Module with a Glass Surface of AG (Anti-Glare) Structure (연요철(Anti-Glare) 구조의 표면 유리 기판을 가지는 고효율 태양전지 모듈)

  • Kong, Dae-Young;Kim, Dong-Hyun;Yun, Sung-Ho;Bae, Young-Ho;Yu, In-Sik;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2011
  • Currently, solar module is using the two methods such as a glass-filled method or a super-straight method. The common point of these methods is to use glass structure on the front of solar module. However, the reflectance of the solar module is high depending on the height of the incident sunlight due to the flat surface of the module front glass. Purposed to solve these problems, AG (anti-glare) structures were formed on the glass surface. Next is fabrication methods of AG structure. First, uneven structure made by micro blaster equipment was dipped in Hydro-fluidic acid (HF) acid. HF acid process was carried out to remove particles and to make high transmittance. The reflectance and transmittance of the anti-glare glass was compared to those of the bare glass. The reflectance of anti-glare glass decreased approximately 1% compared with bare glass. The transmittance of anti-glare glass was similar to bare glass. According to the sample angle, the difference of the reflectance between bare glass and the anti-glare glass was about 19%. Isc and efficiency value of anti-glare glass on bare solar cell appeared about 3.01 mA and 0.228% difference compared with bare glass. Anti-glare glass on textured solar cell appeared about 9.46 mA and 0.741% difference compared with bare glass. As a result, the role of anti-glare in the substrate is to reduces the loss of sunlight reflected from the surface. In this study, therefore, AG structure on the solar cell was used to improve the efficiency of solar cell.

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.