• 제목/요약/키워드: Fluid-bed

검색결과 219건 처리시간 0.032초

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

CPFD 시뮬레이션을 통한 Shroud 노즐 및 수직 구조물이 설치된 기포 유동층 반응기 내에서의 기포 흐름 해석 (CPFD Simulation of Bubble Flow in a Bubbling Fluidized Bed with Shroud Nozzle Distributor and Vertical Internal)

  • 임종훈;배건;신재호;이동호;한주희;이동현
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.678-686
    • /
    • 2016
  • 본 연구에서는 내경 0.3 m, 높이 2.4 m인 기-고 유동층 반응기 내에서 수직 방향의 내부 구조물과 shroud 노즐 분산판이 기포 흐름에 미치는 영향을 CPFD (Computational Particle-Fluid Dynamics)를 이용하여 모델링을 수행하였다. 층 물질로는 Metal-grade 실리콘 입자(MG-Si)가 사용되었으며 $d_p=149{\mu}m$, ${\rho}_p=2,325kg/m^3$, $U_{mf}=0.02m/s$이다. 전체 층물질의 양은 75 kg이며 정적층(static bed) 높이는 0.8 m이다. 수직 내부 구조물이 기포 상승속도에 미치는 영향을 파악하였다. 내부 구조물이 분산판으로부터 0.45 m 높이에 설치되었을 때 기포의 분쇄가 일어났다. 유동층의 압력강하 및 수직 고체체류량 분포는 내부 구조물의 영향을 크게 받지 않는 것으로 나타났다. 하지만 내부 구조물이 제트에 너무 가까운 경우 기포가 분쇄되지 않고 내부 구조물을 우회하여 상승하였으며 내부 구조물이 없는 경우나 0.45 m 높이에 설치된 경우에 비해 더 빠른 속도로 상승하였다.

가스 스프링을 이용한 높이조절 벙커침대 설계 (Design of a Height Adjustable Bunker Bed Using a Gas Spring)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성 (THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

고효율 침전조 설계를 위한 실험 및 수치해석 (Numerical and Experimental Studies for the Design of High Efficiency Sedimentation Bed)

  • 김홍민;최상철;김광용;김병희;임영택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.425-432
    • /
    • 2002
  • Both numerical and experimental studies on sedimentation efficiency of a sedimentation bed were carried out. Three different structures of sedimentation bed and five different combinations of blockage ratio of center feed wall and angle of distributor are implemented to find the optimal values of geometric parameters. The effect of rotation of the distributor on sedimentation efficiency is also investigated. It reveals that the effect of blockage ratio and angle of distributor on sedimentation efficiency is considerable, while rotation effect can be neglected, and that calculated efficiencies show good agreements with those of experiment, qualitatively.

  • PDF

유동반응관을 이용한 상압에서의 알루미나 분말의 알루미늄 증착 (Aluminum Coating on A12O3 Powders in Fluidized Bed Reactor at Atmospheric Pressure)

  • 강창용
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.21-26
    • /
    • 1994
  • Aluminum was deposited on aluminum oxide powders using a fluidized bed reactor at atmospheric pressure. The aluminum oxide powders were irregular flakes with acute angles and the average particle size was 26 $\mu\textrm{m}$. The fluidized bed was formed by flowing argon gas at the velocity of 60 cm/sec. The optimal fluidization condition was obtained with the reactor designed to be tapered so that the fluid velocity decreases as the fluidizing gas goes up along the reactor. Aluminum was deposited by flowing TiBA(Triisobutylaluminum) evaporated at$250^{\circ}C$ through the fluidized bed reactor heated to 350~$450^{\circ}C$. The result from the analysis by XRD and EDAX confirmed the coating of aluminum and an SEM micrograph showed the conformality.

  • PDF

水性가스 轉換反應觸媒의 流動化에 關하여 (The Fluidization of a Water Gas Shift Conversion Catalyst)

  • 이재성;김영우
    • 대한화학회지
    • /
    • 제6권1호
    • /
    • pp.54-60
    • /
    • 1962
  • The water gas shift conversion catalyst prepared by the American Cyanamide Co. was subjected to fluidization in a 2-in. Pyrex glass tube to obtain the basic fluidization characteristic data. The size of the catalyst charged ranged from 70 to 120 meshes and it was supported on a single layer 300-mesh wire gauze through which the fluidizing medium, the air, was passed. Following are some data and facts found by the authors: (1) The catalyst particles were porous, and their surfaces were trough and irregular. (2) The average effective particle density and the average shape factor of these particles were 152.2 lb/$ft^3$ and 0.865 respectively. (3) As the particle diameter of the catalyst increased, the minimum fluid voidage of the bed decreased slightly. (4) Just before the incipient fluidization, pressure drop suddenly fell and the bed expanded simultaneously. (5) After fluidization set in, the expansion characteristics of the catalyst bed were similar to those of sand and glass beads except intense bubbling in the catalyst bed.

  • PDF

순환유동층 열교환기의 유동특성 (Characteristics for Fluid Flow in Circulating Fluidized Heat Exchanger)

  • 이병창;안수환;김원철;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1291-1297
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the feeling increases the pressure loss and degrades the thermal performance of a heat exchanger An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

고체입자 순환유동층 열교환기의 유동특성 (Characteristics of Fluid Flow in a Solid Particle Circulating Fluidized Heat Exchanger)

  • 이병창;안수환;김원철;이윤표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.705-710
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF