• 제목/요약/키워드: Fluid limit

검색결과 223건 처리시간 0.031초

물-에탄올 혼합물을 작동유체로 하는 진공관형 태양열 집열기용 히트파이프의 작동특성 (Performance Characteristics of a Heat Pipe Having Water-Ethanol Mixture as Working Fluid for Evacuated Solar Collectors)

  • 정의국;부준홍;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.78-84
    • /
    • 2008
  • Heat pipes are considered to be promising candidates to enhance the heat transport capability of evacuated solar collectors in a wide temperature range. The working fluid must be selected properly considering various operating conditions of heat pipes for medium-high temperature range to avoid dry-out, local overheating, and frozen failure. The advantage of using binary mixture as heat pipe working fluid is that it can extend operating temperature range of the system as it can overcome operating temperature limit of a single fluid. Various operating temperature ranges were imposed in the experiments to simulate the actual operation of solar collectors using water-ethanol binary mixture. Tests were conducted for the coolant temperature range of -10$^{\circ}C$ to 120$^{\circ}C$, and mixing ratio range was from 0 to 1 based on mass fraction.

정지된 2차원 액체 필름 끝단의 비점성 수축특성에 관한 수치연구 (Numerical Investigation on Two-Dimensional Inviscid Edge Receeding of a Stationary Fluid Sheet)

  • 안자일;송무석
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제10권2호
    • /
    • pp.107-111
    • /
    • 2007
  • 경계를 가지는 비점성 2유체 유동을 해석할 수 있는 수치해법을 개발하고 이를 이용하여 초기에 정지되어 있는 액체판의 끝단에서 일어나는 수축현상을 분석하였다. 경계면은 보오텍스 쉬트로 모델하였고 유동장은 와도격자법과 경계면추적법을 적용하여 계산하였다. 액체판의 끝단은 표면장력에 의해 수축되고 뭉툭한 형상을 취하게 되고, 이러한 끝단은 잘룩한 형상의 통로에 의하여 액체판에 연결되어 안쪽으로 끌려들게 된다. 이러한 현상을 비점성 조건에서 운동에너지 변화를 포함한 무차원 수의 함수로 분석하였다. 끝단의 수축속도는 로 파악되었고 표면장력파의 전파특성이 엄밀하게 조사되어야 함을 밝혔다.

  • PDF

유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석 (Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method)

  • 양동열;김한경;이항수;김경웅
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.873-882
    • /
    • 1992
  • 본 연구에서는 축대칭 형상의 하이드로 미케니칼 디프드로잉 공정을 강소성 유한요소법으로 해석하는 것이다. 본 논문에서는 Fig.1에서 보이는 바와 같은 경우 에 대하여 평두 펀치(flat headed punch)를 사용한 공정을 강소성 유한요소법으로 해 석하였으며 펀치 행정에 따른 챔버내의 압력 및 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 Yang등이 제안 한 방법을 적용하였다. 이론해석의 타당성을 알아보기 위하여 금형을 설계, 제작하 고 실험을 수행하여 결과를 비교 검토하였다.

NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION

  • BACH, KIEHUNN
    • 천문학회지
    • /
    • 제49권1호
    • /
    • pp.1-8
    • /
    • 2016
  • The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the onedimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

Funnel 설계 권고안 (Funnel Design Guidance)

  • 정왕조;조원호;강대열;김승혁
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.59-64
    • /
    • 2006
  • Most important factor to consider funnel performance is exhaust gas temperature and exhaust gas concentration Electric equipments on the wheelhouse top affected exhaust gas temperature. So, it is important that electric equipments keep away from high temperature. Though exhaust gas concentration is not a regulation and restraint, the exhaust 9as can cause serious problems for the on-board air quality and result in irreversible damage to the ship and people. So, we pocus on the exhaust gas concentration also. When judge whether a measured concentration is acceptable or not, criteria based on the LTEL (Long Term Exposure Limit). In this paper, we carried out the smoke simulation study. For this analysis, we used FLUENT which is commercial CFD (Computational Fluid Dynamics) code.

  • PDF

풍화암 지반에 정착된 앵커의 인발저항 특성 (Pull - out Capacity of Ground Anchor in Weathered Rock)

  • 이승환;황의석;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Seismic retrofit of a framed structure using damped cable systems

  • Naeem, Asad;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.287-299
    • /
    • 2018
  • The purpose of this study is to investigate the effectiveness of damped cable systems (DCS) to mitigate the earthquake-induced responses of a building frame structure. The seismic performance of the DCS is investigated using the fragility analysis and life cycle cost evaluation of an existing building retrofitted with the DCS, and the results are compared with the structure retrofitted with conventional fluid viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement approximately reaches to zero for the structure retrofitted with the DCS. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with the conventional fluid viscous damper (VD), especially under the severe ground motions. It is also observed that both the initial and the life cycle costs of the DCS seismic retrofitting technique is lesser compare to the structure retrofitted with the VD.

소형 소닉 노즐의 유출계수에 관한 실험적 연구 (An Experimental Study on the Discharge Coefficients of Small Sonic Nozzles)

  • 차지선;박경암;최용문;최해만;윤복현
    • 한국유체기계학회 논문집
    • /
    • 제3권2호
    • /
    • pp.44-49
    • /
    • 2000
  • Small sonic nozzles (throat diameter $0.28{\~}4.48mm$) were tested in the gas flow standard system. This standard system is composed of two bell provers and 5 column piston provers, compressor, filters, and dehumidifier. The discharge coefficients of small some nozzles are obtained and correlated as a function of throat Reynolds numbers with $0.316\%$ uncertainty at a confidence level $95\%$. The tested high Reynolds number was the lower limit of ISO 9300 specifications. The data are useful as data base for revision of ISO 9300.

  • PDF

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF