Acknowledgement
Supported by : Ministry of Land, Infrastructure and Transport of Korean government
References
- ASCE/SEI 7-16 (2016), American Society of Civil Engineers; Minimum Design Loads for Buildings and Other Structures, Reston, FL, USA.
- ASCE/SEI 41-13 (2013), American Society of Civil Engineers; Seismic Evaluation and Retrofit of Existing Buildings, Reston, FL, USA.
- Bedoya-Ruiz, D.A., Bermudez, C.A., A lvarez, D.A., Ortiz, G.A. and Escobar, J.V. (2012), "Cyclic behavior of prestressed precast concrete walls", Proceedings of 15th WCEE, Lisbon, Portugal.
- Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 135(4), 414-424. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414)
- Chou, C.C., Tsai, W.J. and Chung, P.T. (2016), "Development and validation tests of a dual-core self-centering sandwiched buckling-restrained brace (SC-SBRB) for seismic resistance", J. Struct. Eng., 121, 30-41. https://doi.org/10.1016/j.engstruct.2016.04.015
- Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96)
- Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for the 2000 SAC Federal Emergency Management Agency steel moment frame guidelines", J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
- Dolce, M. and Cardone, D. (2006), "Theoretical and experimental studies for the application of shape memory alloys in civil engineering", J. Eng. Mater. Technol., 128(3), 302-311. https://doi.org/10.1115/1.2203106
- Dyanati, M., Huang, Q. and Roke, D.A. (2014), "Structural and nonstructural performance evaluation of self-centering, concentrically braced frames under seismic loading", In: Structures Congress 2014, pp. 2393-2404.
- Eatherton, M.R., Ma, X., Krawinkler, H., Mar, D., Billington, S., Hajjar, J.F. and Deierlein, G.G. (2014), "Design concepts for controlled rocking of self-centering steel-braced frames", J. Struct. Eng., 140(11), 04014082. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001047
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors; Federal Emergency Management Agency (FEMA), FEMA, USA.
- Ingalkar, R.S. (2014), "Rehabilitation of Buildings and Bridges by Using Shape Memory Alloys (SMA)", Int. J. Civil Eng. Res., 5(2), 163-168.
- Kim, J., Choi, H. and Min, K.W. (2003), "Performance-based design of added viscous dampers using capacity spectrum method", J. Earthq. Eng., 7(1), 1-24. https://doi.org/10.1080/13632460309350439
- Kim, J., Kim, M. and Nour Eldin, M. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., Int. J., 25(4), 473-484
- Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., Int. J., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291
- Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Constr. Steel Res., 136, 128-139. https://doi.org/10.1016/j.jcsr.2017.05.005
- Marshall, J.D. and Charney, F.A. (2012), "Seismic response of steel frame structures with hybrid passive control systems", Earthq. Eng. Struct. Dyn., 41(4), 715-733. https://doi.org/10.1002/eqe.1153
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037
- Naeem, A. and Kim, J. (2018), "Seismic performance evaluation of a spring viscous damper cable system", Eng. Struct., 176, 455-467. https://doi.org/10.1016/j.engstruct.2018.09.055
- Naeem, A., Nour Eldin, M., Kim, J. and Kim, J. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4
- Nour Eldin, M., Naeem, A. and Kim, J. (2018a), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 1369433218773487.
- Nour Eldin, M., Kim, J.G. and Kim, J. (2018b), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., Int. J., 27(5), 633-646.
- PEER (2017), PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. http://peer.berkeley.edu/nga
- Pekcan, G., Mander, J.B. and Chen, S.S. (2000), "Balancing lateral loads using tendon-based supplemental damping system", J. Struct. Eng., 126(8), 896-905. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(896)
- Rahman, M.A. and Sritharan, S. (2007), "Performance-based seismic evaluation of two five-story precast concrete hybrid frame buildings", J. Struct. Eng., 133(11), 1489-1500. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:11(1489)
- Roke, D. and Jeffers, B. (2012), "Parametric study of selfcentering concentrically-braced frame systems with frictionbased energy dissipation", Proceeding of Behaviour of Steel Structures in Seismic Areas (STESSA), pp. 691-696.
- Sorace, S. and Terenzi, G. (2001), "Non-linear dynamic modelling and design procedure of FV spring-dampers for base isolation", Eng. Struct., 23(12), 1556-1567. https://doi.org/10.1016/S0141-0296(01)00063-3
- Sorace, S. and Terenzi, G. (2012a), "The damped cable system for seismic protection of frame structures. Part I: General concepts, testing, and modeling", Earthq. Eng. Struct. Dyn., 41(5), 915-928. https://doi.org/10.1002/eqe.1166
- Sorace, S. and Terenzi, G. (2012b), "The damped cable system for seismic protection of frame structures. Part II: Design and application", Earthq. Eng. Struct. Dyn., 41(5), 929-947. https://doi.org/10.1002/eqe.1165
- Tsai, C., Chen, K. and Chen, C. (1998), "Seismic resistibility of high-rise buildings with combined velocity-dependent and velocity-independent devices", ASME-PUBLICATIONS-PVP 366, 103-110.
- Turner & Townsend (2016), International Construction Cost Survey 2016-2017.
- Wen, Y.K. and Kang, Y.J. (2001), "Minimum building life-cycle cost design criteria I: Methodology", J. Struct. Eng. (ASCE), 127(3), 330-337. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:3(330)
- Xu, Z.D., Shen, Y.P. and Zhao, H.T. (2003), "A synthetic optimization analysis method on structures with viscoelastic dampers", Soil Dyn. Earthq. Eng., 23(8), 683-689. https://doi.org/10.1016/j.soildyn.2003.07.003
- Xu, Z.D., Zhao, H.T. and Li, A.Q. (2004), "Optimal analysis and experimental study on structures with viscoelastic dampers. Journal of Sound and Vibration", 273(3), 607-618. https://doi.org/10.1016/S0022-460X(03)00522-4
- Xu, Z.D., Liao, Y.X., Ge, T. and Xu, C. (2016), "Experimental and theoretical study of viscoelastic dampers with different matrix rubbers", J. Eng. Mech., 142(8), 04016051. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001101
Cited by
- Development of Seismic Retrofit Devices for Building Structures vol.8, pp.3, 2019, https://doi.org/10.21022/ijhrb.2019.8.3.221
- Seismic retrofit of a structure using self-centring precast concrete frames with enlarged beam ends vol.72, pp.22, 2018, https://doi.org/10.1680/jmacr.19.00012
- Steel hysteretic column dampers for seismic retrofit of soft-first-story structures vol.37, pp.3, 2018, https://doi.org/10.12989/scs.2020.37.3.259