• Title/Summary/Keyword: Fluid field

Search Result 2,250, Processing Time 0.025 seconds

The Flow Visualization of ER Fluid Between Two Parallel-Plate Electrodes Separated by Small Distance (좁은 평행평판전극 사이의 ER유체 유동의 가시화)

  • Park, Myeong-Kwan;Rhee, Eun-Jun;Oshima, Shuzo;Yamane, Ryuichiro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.801-810
    • /
    • 1999
  • The purpose of present research was to get characteristics and basic knowledges of electrorheological(ER) suspension. To observe behaviors of the ER suspensions. transparent conductive plates were used to visualize the flow of ER suspensions between two parallel plate electrodes. The influence of flowing speed and intensity of electric field on the ER fluid were examined in circle-shaped electric field, and it takes several hundred milliseconds that suspensions in flow cluster. The present study also conducts a numerical analysis adopting the Bingham model. It is found that simple Bingham model can not property describe the flow behavior in the parallel plates.

Two-fluid model of the tangential plasmapause

  • Seough, Jung-Joon;Kim, Khan-Hyuk;Yoon, Peter H.;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.41.1-41.1
    • /
    • 2010
  • A bipolar magnetic field perturbation in the meridional plane was observed when the Polar spacecraft crossed the plasmapause near the midnight, which was identified by a clear jump in density and temperature, from the plasmasheet to the plasmasphere. The bipolar variation shows a negative-then-positive polarity. To examine the bipolar magnetic field perturbation at the plasmapause, we assume one-dimensional model with physical quantities varying along a direction normal to the plasmapause and employ two-fluid approach for the tangential plasmapause. That is, the magnetic fields on both sides are parallel. Considering Ampere's law and pressure balance relation, we have a perturbed magnetic field, which is consistent with the observation at the plasmapause.

  • PDF

Electrorheological Effect of the Suspension Composed of Bismark Brown Chitosan Succinate as the Dispersed Phase

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.21-25
    • /
    • 2007
  • The electrorheological effect of the suspension composed of Bismark Brown chitosan succinate as the dispersed phase in silicone oil was investigated. Bismark Brown chitosan succinate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.84 power on the electric field. The experimental results for the suspension correlated with the polarization model and Bismark Brown chitosan succinate suspension behaved as an anhydrous ER fluid. On the basis of the results, Bismark Brown chitosan succinate suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amide and amine polar groups of the Bismark brown chitosan succinate particles.

Magnetic withdrawal of particles for multiple purposes in nuclear power plants

  • Kam, Dong Hoon;Jeong, Yong Hoon;Choi, Sung-Min;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3979-3989
    • /
    • 2021
  • Several parametric effects on the magnetic collection have been evaluated considering dimension, strength of external magnetic field, injected velocity and particle concentration in the working fluid. Besides, accidental environments, expected in the containment of nuclear power plants, have also been addressed for the capture efficiency. The capture efficiency is especially enhanced with magnetic particle size and magnetic field strength through increased magnetic force; the non-magnetic coating thickness and fluid velocity hinder the magnetic collection. Based on the assessment, the magnetic withdrawal system can effectively capture magnetic particles even under accidental environments. Withdrawal of multifunctional magnetic particles or filtering of magnetic impurities can be effectively realized through the system.

Powering Analysis of Oscillating Foil Moving in Propagating Wave Flow Field (전파하는 파동유장 중 전진하며 동요하는 2차원 날개의 동력해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • In this study, a two-dimensional oscillating foil with forward speed in a propagating wave flow field was considered. The time-mean power to maintain the heaving and pitching motions of the foil was analyzed using the perturbation theory in an ideal fluid. The power, which was a non-linear quantity of the second-order, was expressed in terms of the quadratic transfer functions related to the mutual product of the heaving and pitching motions and incoming vertical flow. The effects of the pivot point and phase difference among the disturbances were studied. The negative power, which indicates energy extraction from the fluid, is shown as an example calculation.

MHD Boundary Layer Flow and Heat Transfer of Rotating Dusty Nanofluid over a Stretching Surface

  • Manghat, Radhika;Siddabasappa, Siddabasappa
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.853-867
    • /
    • 2020
  • The aim of this study was to analyze the momentum and heat transfer of a rotating nanofluid with conducting spherical dust particles. The fluid flows over a stretching surface under the influence of an external magnetic field. By applying similarity transformations, the governing partial differential equations were trans-formed into nonlinear coupled ordinary differential equations. These equations were solved with the built-in function bvp4c in MATLAB. Moreover, the effects of the rotation parameter ω, magnetic field parameter M, mass concentration of the dust particles α, and volume fraction of the nano particles 𝜙, on the velocity and temperature profiles of the fluid and dust particles were considered. The results agree well with those in published papers. According to the result the hikes in the rotation parameter ω decrease the local Nusselt number, and the increasing volume fraction of the nano particles 𝜙 increases the local Nusselt number. Moreover the friction factor along the x and y axes increases with increasing volume fraction of the nano particles 𝜙.

STUDY OF P-CURVATURE TENSOR IN THE SPACE-TIME OF GENERAL RELATIVITY

  • Ganesh Prasad Pokhariyal;Sudhakar Kumar Chaubey
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.316-324
    • /
    • 2023
  • The P-curvature tensor has been studied in the space-time of general relativity and it is found that the contracted part of this tensor vanishes in the Einstein space. It is shown that Rainich conditions for the existence of non-null electro variance can be obtained by P𝛼𝛽. It is established that the divergence of tensor G𝛼𝛽 defined with the help of P𝛼𝛽 and scalar P is zero, so that it can be used to represent Einstein field equations. It is shown that for V4 satisfying Einstein like field equations, the tensor P𝛼𝛽 is conserved, if the energy momentum tensor is Codazzi type. The space-time satisfying Einstein's field equations with vanishing of P-curvature tensor have been considered and existence of Killing, conformal Killing vector fields and perfect fluid space-time has been established.

Viscous Flow Analysis around a Blade Section by a Hybrid Scheme Combining a Panel Method and a CFD Method (패널법과 전산유동해석법의 결합을 이용한 날개단면 주위 점성유동 해석)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.355-363
    • /
    • 2013
  • Panel methods are essential tools for analyzing a fluid-flow problem around complex three dimensional bodies, but they lack ability to solve viscous effects. On the other hand, CFD methods are considered as powerful tools for analyzing fluid-flow characteristics including viscosity. However, they also have short falls, requiring more computing time and showing different results depending on the selection of turbulence models and grid systems. In this paper a hybrid scheme combining a panel method and a CFD method is suggested. The scheme adopts a panel method for far-field solution where viscous effects are negligible and a CFD method for the solution of RANS equations in near-field where viscous effects are relatively strong. The intermediate region between the far-field and near-field is introduced where the calculated field point velocities by the panel method are given as boundary velocities for the CFD method. To verify the scheme, calculated results, by a panel method, a CFD method and the hybrid scheme, for a two dimensional foil section are compared. The suggested hybrid scheme gives reasonable results, while computation time and memory can be dramatically reduced. By using the hybrid scheme efforts can be concentrated for the local flow near the leading and trailing edges, by providing more dense grid system, where detailed flow characteristics are required.

Machining Performance of Optical Glass with Magnetorheological Fluid Jet Polishing (MR 유체 제트 연마를 이용한 광학유리의 가공성능)

  • Kim, Won-Woo;Kim, Wook-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.929-935
    • /
    • 2011
  • As a deterministic finishing process for the optical parts having complex surface, machining performance of the magnetorheological(MR) fluid jet polishing of optical glass are studied and compared with a general water jet polishing. First, design of the jet polishing system which has the special electromagnet-nozzle unit for stabilizing the slurry jet based on MR fluid and the change of jet shape as magnetic field is applied are explained. Second, for the BK7 glass, machining spot and its cross section profile are analyzed and the unique effect of MR fluid jet polishing is shown. Third, both material removal depth and surface roughness are explored in order to investigate the polishing performance of MR fluid jet. With the same ceria abrasives and amount in the polishing slurries, MR fluid jet shows superior machining performance compared to water jet and the difference of material removal mechanism and its resulting performance are described.

An Analysis of the acoustic source and radiation acoustic field of centrifugal fans (원심팬 음원 및 방사 음향장 해석)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.97-104
    • /
    • 1998
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. Lowson's method is used to predict the acoustic pressure in a free field. A DVM(discrete vortex method) is used to model the centrifugal fan and to calculate the flow field. In order to compare the experimental data, a centrifugal fan and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data.

  • PDF