DOI QR코드

DOI QR Code

Magnetic withdrawal of particles for multiple purposes in nuclear power plants

  • Kam, Dong Hoon (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jeong, Yong Hoon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Sung-Min (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yun, Jong-Il (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.08.26
  • Accepted : 2021.06.25
  • Published : 2021.12.25

Abstract

Several parametric effects on the magnetic collection have been evaluated considering dimension, strength of external magnetic field, injected velocity and particle concentration in the working fluid. Besides, accidental environments, expected in the containment of nuclear power plants, have also been addressed for the capture efficiency. The capture efficiency is especially enhanced with magnetic particle size and magnetic field strength through increased magnetic force; the non-magnetic coating thickness and fluid velocity hinder the magnetic collection. Based on the assessment, the magnetic withdrawal system can effectively capture magnetic particles even under accidental environments. Withdrawal of multifunctional magnetic particles or filtering of magnetic impurities can be effectively realized through the system.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2017M2A8A4056643), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Trade, Industry and Energy) (No. 20193110100050).

References

  1. A. Amiri, M. Shanbedi, H. Amiri, S.Z. Heris, S.N. Kazi, B.T. Chew, H. Eshghi, Pool boiling heat transfer of CNT/water nanofluids, Appl. Therm. Eng. 71 (1) (2014) 450-459. https://doi.org/10.1016/j.applthermaleng.2014.06.064
  2. M.O. Aviles, EXPERIMENTAL AND THEORETICAL STUDIES OF IMPLANT ASSISTED MAGNETIC DRUG TARGETING, University of South Carolina, 2008. Ph.D. Dissertation.
  3. S. Chikazumi, Physics of Magnetism, John Wiley & Sons, Inc., New York, 1964, p. 411.
  4. D. Fletcher, Fine particle high gradient magnetic entrapment, IEEE Trans. Magn. 27 (4) (1991) 3655-3677. https://doi.org/10.1109/20.102936
  5. F.J. Friedlaender, M. Takayasu, J.B. Rettig, C.P. Kentzer, Particle flow and collection process in single wire HGMS studies, IEEE Trans. Magn., MAG- 14 (6) (1978) 1157-1164.
  6. Y.H. Jeong, M.S. Sarwar, S.H. Chang, Flow boiling CHF enhancement with surfactant solutions under atmospheric pressure, Int. J. Heat Mass Tran. 51 (2008a) 1913-1919. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.044
  7. Y.H. Jeong, W.J. Chang, S.H. Chang, Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids, Int. J. Heat Mass Tran. 51 (11-12) (2008b) 3025-3031. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.023
  8. D.H. Kam, J.H. Lee, T. Lee, Y.H. Jeong, Critical heat flux for SiC- and Cr-coated plates under atmospheric condition, Ann. Nucl. Energy 76 (2015) 335-342. https://doi.org/10.1016/j.anucene.2014.09.046
  9. D.H. Kam, Y.J. Choi, Y.H. Jeong, Boric acid and boiling time effects on critical heat flux for corrosive and non-corrosive materials, Ann. Nucl. Energy 136 (2020), 106999. https://doi.org/10.1016/j.anucene.2019.106999
  10. D.H. Kam, Y.H. Jeong, S.-M. Choi, J.-I. Yun, J.H. Lee, T. Lee, M.S. Lee, I.-K. Jung, J.-W. Jang, Y. Sihn, T.-H. Kim, J.-K. Lee, S.-H. Kang, S.-C. Han, J.-Y. Lee, Y.T. Jee, A novel approach for critical heat flux enhancement during severe accident mitigation with removal of radioactive materials from the coolant, Nucl. Eng. Des. 365 (2020a), 110715. https://doi.org/10.1016/j.nucengdes.2020.110715
  11. S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Tran. 123 (2001) 1071-1079. https://doi.org/10.1115/1.1409265
  12. S.J. Kim, T. McKrell, J. Buongiorno, L.-W. Hu, Experimental study of flow critical heat flux in Alumina-water, Zinc-oxide-water, and Diamond-water nanofluids, J. Heat Tran. 131 (2009), 043204. https://doi.org/10.1115/1.3072924
  13. J. Lee, Y.H. Jeong, S.H. Chang, CHF enhancement in flow boiling system with TSP and boric acid solutions under atmospheric pressure, Nucl. Eng. Des. 240 (2010) 3594-3600. https://doi.org/10.1016/j.nucengdes.2010.05.027
  14. J.H. Lee, T. Lee, Y.H. Jeong, Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids, Int. J. Heat Mass Tran. 55 (2012) 2656-2663. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.027
  15. J.H. Lee, T. Lee, Y.H. Jeong, The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles, Int. J. Heat Mass Tran. 61 (2013) 432-438. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.018
  16. T. Lee, D.H. Kam, J.H. Lee, Y.H. Jeong, Effects of two-phase flow conditions on flow boiling CHF enhancement of magnetite-water nanofluids, Int. J. Heat Mass Tran. 74 (2014) 278-284. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.028
  17. J.H. Lee, D.H. Kam, Y.H. Jeong, The effect of nanofluid stability on critical heat flux using magnetite-water nanofluids, Nucl. Eng. Des. 292 (2015) 187-192. https://doi.org/10.1016/j.nucengdes.2015.05.026
  18. M.S. Lee, D.H. Kam, Y.H. Jeong, Effects of silica nanoparticles and low concentration on the deterioration of critical heat flux in a pool boiling experiment with a flat-type heater, Int. J. Heat Mass Tran. 144 (2019) 118420. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.070
  19. S.P. Liaw, V.K. Dhir, Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces, J. Heat Tran. 111 (1989) 731-738. https://doi.org/10.1115/1.3250744
  20. S.-G. Lim, D.-H. Kim, J.-M. Lee, S.-W. Lee, H.-G. Kim, H.C. No, Prediction of Heat Removal Performance for Passive Containment Cooling System Using MARS-KS Code Version 1.14, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2017. May 18-19.
  21. G.D. Moeser, K.A. Roach, W.H. Green, T.A. Hatton, P.E. Laibinis, High-Gradient magnetic separation of coated magnetic nanoparticles, AIChE 50 (11) (2004) 2835-2848. https://doi.org/10.1002/aic.10270
  22. J.A. Oberteuffer, High gradient magnetic separation, IEEE Trans. Magn., MAG-9 (3) (1973) 303-306. https://doi.org/10.1109/TMAG.1973.1067673
  23. J.W. Park, S.J. Oh, H.T. Kim, Y.H. Lee, D.W. Jeong, Assessment of In-Vessel Core Debris Coolability for the APR1400 Design, " Korea Hydro & Nuclear Power Co., Ltd., 2001.
  24. S.D. Park, S.W. Lee, S. Kang, I.C. Bang, J.H. Kim, H.S. Shin, D.W. Lee, Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux, Appl. Phys. Lett. 97 (2010), 023103. https://doi.org/10.1063/1.3459971
  25. H.M. Park, Y.H. Jeong, S. Heo, Effect of heater material and coolant additives on CHF for a downward facing curved surface, Nucl. Eng. Des. 278 (2014) 344-351. https://doi.org/10.1016/j.nucengdes.2014.07.019
  26. S.L. Song, J.H. Lee, S.H. Chang, CHF enhancement of SiC nanofluid in pool boiling experiment, Exp. Therm. Fluid Sci. 52 (2014) 12-18. https://doi.org/10.1016/j.expthermflusci.2013.08.008
  27. M. Takayasu, R. Gerer, F.J. Friedlaender, Magnetic separation OF submicron particles, IEEE Trans. Magn., MAG- 19 (5) (1983) 2112-2114.
  28. S. Uchiyama, S. Kondo, M. Takayasu, Performance OF parallel stream type magnetic filter for hgms, IEEE Trans. Magn., MAG- 12 (6) (1976) 895-897.
  29. C.H. Wang, V.K. Dhir, Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, J. Heat Tran. 115 (1993) 659-669. https://doi.org/10.1115/1.2910737
  30. J.H.P. Watson, Magneti filtration, J. Appl. Phys. 44 (9) (1973) 4209-4213. https://doi.org/10.1063/1.1662920
  31. J. Yang, F.B. Cheung, J.L. Rempe, K.Y. Suh, S.B. Kim, Critical heat flux for downward-facing boiling on a coated hemispherical vessel surrounded by an insulation structure, Nucl. Eng. Technol. 38 (2006) 139-146.
  32. T.-Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically seeded filtration, Chem. Eng. Sci. 55 (2000) 1101-1113. https://doi.org/10.1016/S0009-2509(99)00383-8
  33. H. Zhang, J.F. Banfield, Interatomic Coulombic interactions as the driving force for oriented attachment, CrystEngComm 16 (2014) 1568-1578. https://doi.org/10.1039/c3ce41929k