• 제목/요약/키워드: Fluid field

검색결과 2,254건 처리시간 0.026초

Surgical Outcomes of Pituitary Apoplexy

  • Kim, Jin-Kyung;Park, Bong-Jin;Cho, Keun-Tae;Lee, Sang-Koo;Cho, Maeng-Ki;Kim, Young-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권6호
    • /
    • pp.450-455
    • /
    • 2005
  • Objective : Pituitary apoplexy is a rare clinical syndrome caused by pituitary hemorrhage, hemorrhagic infarction, or ischemic infarction within a pituitary tumor or surrounding structure. We analyzed surgical outcomes of pituitary apoplexy. Methods : From 1995 to 2004, we reviewed our experience of 29 cases with pituitary apoplexy. In all patients, pre- and postoperative clinical presentation were checked and endocrine study were performed. Results : The most frequent symptoms were visual disturbance [24 cases, 82.8%] and headache [22 cases, 75.9%]. After surgery, headache improved in 86.4%, 88.9% among 18cases who had preoperative reduction in visual acuity and 75.0% among 12 cases who had preoperative reduction in visual field improved. In endocrine study, long-term steroid and thyroid hormone replacement therapy was necessary in 42.9% of 14 cases presenting preoperative hypopituitarism. Postoperative transient hypopituitarism developed in 5 cases [33.3%] and they all recovered in follow up study. Postoperative endocrinological recovery were in 77.9% of 9 cases with preoperative prolactinoma, 1 case in 2 cases with acromegaly and one case with Cushing disease. Postoperative complications were diabetes inspidus[DI] in 1 case [3.4%]. cerebrospinal fluid[CSF] leakage in 2 cases [6.8%] and death in 1 case [3.4%] due to sepsis, Conclusion : We report good results through surgery of pituitary apoplexy in a clinical and endocrine outcomes. The surgery should be performed as soon as possible to be a suitable method for treating pituitary apoplexy.

지게차의 주관적 음질평가와 Zwicker 음질지수의 상관관계 및 전달경로분석법(OTPA)을 활용한 음질 기여도 분석 (A Study on Contribution Analysis using Operational Transfer Path Analysis based on the Correlation between Subjective Evaluation and Zwicker's Sound Quality Index for Sound Quality of Forklifts)

  • 김범수;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.19-25
    • /
    • 2016
  • Recently, drivers have begun to regard comfort in the cabin as one of the most important factors in construction equipment like forklifts. Accordingly, it has become more important to design a forklift cabin with a better sound quality as well as lower sound level, which can make a driver more comfortable. In this paper, the correlation between subjective evaluation and Zwicker's sound quality index was analyzed through a blind test by a few workers in forklifts and other construction equipment in several countries. Correlation analysis showed that Loudness and Sharpness were ranked in sequence, and tendencies were different from country to country. Also, contribution analysis for Loudness and Sharpness using operational transfer path analysis (OTPA), which is widely used in the field of noise, vibration, and harshness (NVH), was performed. However, Loudness and Sharpness cannot be used with OTPA directly because there are no linear relationships between the sources and receivers. In this paper, both are calculated by applying the DIN 45631 method with a contribution rate (%) of 1/3 Octave Sound Pressure Level by OTPA method in addition to considering spectral masking.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제29권5호
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석 (Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program)

  • 김병수;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석 (Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features)

  • 사공명;류성하
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.989-1002
    • /
    • 2018
  • 암반 내 그라우팅은 불연속면 내부에 시멘트 그라우트재를 주입하여 주변지반을 강화하는 목적으로 사용된다. 현장에서 다상의 그라우트재의 주입 시 거동특성 및 주입경로인 3차원 절리면의 형태가 사전파악되지 않으므로 정량적인 설계가 어려운 분야중 하나이다. 따라서 현장에서의 그라우트 주입 거동특성을 나타내는 GIN (Grouting Intensity Number) 지표를 이용하여 주입 모니터링을 통해 적절한 시공관리를 수행하는 것이 최적이 방안이다. 본 논문에서는 그라우팅 주입 시 절리면의 거칠기 등급과 물시멘트(W/C)비에 따라 발생하는 압력의 손실을 전산유동해석을 수행하여 조사하였다. 절리면이 거칠수록 그리고 물시멘트비가 높을수록 주입 시 마찰저항은 크게 발생하였으며 해당 결과를 각 조건별 상관식으로 정리하였다.

금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(II) (Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (II))

  • 김용석;최성웅;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.51-58
    • /
    • 2019
  • The objective of this study was to investigate a simulation technology for the AM field based on ANSYS Inc.. The introduction of metal 3D printing AM process, and the examining of the present status of AM process simulation software, and the AM process simulation processor were done in the previous study (part 1). This present study (part 2) examined the use of the AM process simulation processor, presented in Part 1, through direct execution of Topology Optimization, Ansys Workbench, Additive Print and Additive Science. Topology Optimization can optimize additive geometry to reduce mass while maintaining strength for AM products. This can reduce the amount of material required for additive and significantly reduce additive build time. Ansys Workbench and Additive Print simulate the build process in the AM process and optimize various process variables (printing parameters and supporter composition), which will enable the AM to predict the problems that may occur during the build process, and can also be used to predict and correct deformations in geometry. Additive Science can simulate the material to find the material characteristic before the AM process simulation or build-up. This can be done by combining specimen preparation, measurement, and simulation for material measurements to find the exact material characteristics. This study will enable the understanding of the general process of AM simulation more easily. Furthermore, it will be of great help to a reader who wants to experience and appreciate AM simulation for the first time.

비특이화 간접경계적분방정식 방법을 이용한 부유식 구조물의 유체동역학적 거동에 대한 주파수영역 해석 (Frequency Domain Analysis for Hydrodynamic Responses of Floating Structure using Desingularized Indirect Boundary Integral Equation Method)

  • 오승훈;정동호;조석규;남보우;성홍근
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.11-22
    • /
    • 2019
  • In this paper, a Rankine source method is applied and validated to analyze the hydrodynamic response of a three-dimensional floating structure in the frequency domain. The boundary value problems for radiation and diffraction problem are solved by using a desingularized indirect boundary integral equation method (DIBIEM). The DIBIEM is simpler and faster than conventional methods based on the numerical surface integration of Green's function because the singularities of Green's function are located outside of fluid regions. In case of floating structure with complex geometry, it is difficult to desingularize the singularities of Green's function consistently. Therefore a mixed approach is carried out in this study. The mixed approach is partially desingularized except singularities of the body. Wave drift loads are calculated by the middle-field formulation method that is mathematically simple and has fast convergence. In order to validate the accuracy of the developed program, various numerical simulations are carried out and these results are analyzed and compared with previously published calculations and experiments.

플라즈마에 의한 평형 유동을 고려한 스파크제트 액츄에이터 유동 해석 프로그램 개발과 추력 특성 연구 (Research on Flow Analysis Program Development Considering Equilibrium Plasma Flow and Impulse Characterization of Sparkjet Actuator)

  • 김형진;신진영;채정헌;안상준;김규홍
    • 한국항공우주학회지
    • /
    • 제47권2호
    • /
    • pp.90-97
    • /
    • 2019
  • 스파크제트 액츄에이터는 플라즈마 합성 제트 액츄에이터(plasma synthetic jet actuator, PSJA)라고도 불리는 능동 유동 제어 장치로, 초음속 유동의 제어 가능성이 있어 많은 연구가 진행 중이다. 이 액츄에이터는 아크 플라즈마를 이용해 캐비티(cavity) 내부에 에너지를 주입하여 온도와 압력을 상승시킨다. 온도와 압력이 상승한 캐비티에서 오리피스(orifice)를 통해 압력파와 제트가 분출되어 외부 유동에 교란을 준다. 플라즈마의 영향으로 캐비티 유동은 고온, 고압의 평형 유동이 되기 때문에 스파크제트 액츄에이터의 유동 해석을 위해선 공기의 평형 상태를 고려해야 한다. 본 연구에서는 평형 유동의 특성을 고려하여 스파크제트 액츄에이터 유동 해석을 위한 수치해석 프로그램을 개발했다. 개발된 프로그램의 검증으로 문헌에서 얻을 수 있는 실험 결과와 시간에 따른 제트의 위치를 비교했다. 또한 상온, 상압의 무풍에서 액츄에이터의 추력 특성을 분석했다.

중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석 (Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude)

  • 최경준;이성욱;오광석;김종암
    • 한국항공우주학회지
    • /
    • 제46권12호
    • /
    • pp.986-993
    • /
    • 2018
  • 측 추력 제트는 유도무기의 자세제어 및 궤도 천이 기동을 하는 데 있어 기존의 핀과 같이 제어 면을 이용한 방식보다 우수한 기동성을 갖는다. 하지만 초음속 영역에서 비행 시 측 추력 제트로 인한 제트 간섭 유동이 발생하며 충격파와 경계층 유동, 와류 유동의 상호 작용으로 인해 매우 복잡한 유동 구조를 나타낸다. 특히 직격 파괴(hit-to-kill) 방식의 요격체의 경우 정밀한 제어 및 기동이 요구되기 때문에 제트 간섭 유동이 미치는 영향에 대한 분석이 필요하다. 기존의 제트 간섭 해석은 저고도 운용 조건에서 주로 수행되었으나 중고도 운용 조건의 경우 해석 사례가 많지 않으며 대기 조건으로 인해 분사 제트 유동이 상대적으로 크게 발달하는 특징을 갖는다. 본 연구에서는 중고도에서 비행하는 요격체 형상에 대해 받음각 조건에 따라 제트 간섭 유동 해석을 수행하였다. 해석 결과를 바탕으로 유동장의 구조적인 변화 특성을 분석하였으며, 공력 계수의 변화를 비교하였다.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.