• Title/Summary/Keyword: Fluid dynamics

Search Result 3,476, Processing Time 0.028 seconds

Real-time Flow Animation Techniques Using Computational Fluid Dynamics (전산유체역학을 이용한 실시간 유체 애니메이션 기술)

  • Kang Moon Koo
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

Air Flow in a Neonate Incubator: Flow Visualizations, Hot-Wire Velocity Measurements and Computational Fluid Dynamics (신생아 보육기의 공기유동에 관한 유동가시화, hot-wire 속도계측 및 전산유동 해석)

  • Kim, Young-Ho;Kwon, Chi-Ho;Yoo, Seoung-Chool
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.162-168
    • /
    • 2001
  • In the present study, flow visualizations, hot-wire velocity measurements and computational fluid dynamics were performed in order to determine complicated air flow characteristics in a neonate incubator. In this study, following conclusions can be made: (1) The flow visualization technique developed in the present study revealed an enough qualitative information for the flow field in the neonate incubator. Flow structures in a neonate incubator with a realistic three-dimensional shape was successfully visualized the present study. (2) Results from the flow visualization were relatively in good agreements with those obtained from the computational fluid dynamics. (3) Velocities very near the neonate measured by the hot-wire anemometer were relevant to those obtained from the computational fluid dynamics. (4) Temperatures were higher at the neck region and the medial aspect of both thighs, but lower in both extremities. (5) Small vortices between the neonate and the mattress might interfere with convective and evaporative heat transfers on the neonate's surface. In the fluid dynamic aspect, it is important to eliminate the formation of these small vortices for the design of incubator chamber.

  • PDF

Fluid flow simulation in carbon nano tube using molecular dynamics (탄소나노튜브 내 유체유동의 분자동역학 모사)

  • 우영석;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.