• Title/Summary/Keyword: Fluid Surface

Search Result 2,440, Processing Time 0.033 seconds

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.

Enhancement of bioactivity and osseointegration in Ti-6Al-4V orthodontic mini-screws coated with calcium phosphate on the TiO2 nanotube layer

  • Byeon, Seon-Mi;Kim, Hye-Ji;Lee, Min-Ho;Bae, Tae-Sung
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.412-419
    • /
    • 2022
  • Objective: This study evaluated the effect of cyclic pre-calcification treatment on the improvement of bioactivity and osseointegration of Ti-6Al-4V mini-screws. Methods: The experimental groups were: an untreated group (UT), an anodized and heat-treated group (AH), and an anodized treatment followed by cyclic pre-calcification treatment group (ASPH). A bioactive material with calcium phosphate was coated on the mini-screws, and its effects on bioactivity and osseointegration were evaluated in in vitro and in vivo tests of following implantation in the rat tibia. Results: As a result of immersing the ASPH group in simulated body fluid for 2 days, protrusions appearing in the initial stage of hydroxyapatite precipitation were observed. On the 3rd day, the protrusions became denser, other protrusions overlapped and grew on it, and the calcium and phosphorus concentrations increased. The removal torque values increased significantly in the following order: UT group (2.08 ± 0.67 N·cm), AH group (4.10 ± 0.72 N·cm), and ASPH group (6.58 ± 0.66 N·cm) with the ASPH group showing the highest value (p < 0.05). In the ASPH group, new bone was observed that was connected to the threads, and it was confirmed that a bony bridge connected to the adjacent bone was formed. Conclusions: In conclusion, it was found that the surface treatment method used in the ASPH group improved the bioactivity and osseointegration of Ti-6Al-4V orthodontic mini-screws.

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process (이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화)

  • Ji Won Yun;Young Mi Chung
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao;Weilong Zhu;Wenbin Sun;Changbao Jiang;Hailong Ma;Hui Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

Sensitivity of East Asian Summer Monsoon Precipitation to the Location of the Tibetan Plateau

  • Soo-Hyun Seok;Kyong-Hwan Seo
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.8829-8840
    • /
    • 2021
  • Recent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east-west direction, the TP is likely to force the stationary waves that induce precipitation over the midlatitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.

Identification of concurrent infection with Jaagsiekte sheep retrovirus and maedi-visna virus in China

  • Xujie Duan;Xiaona Shi;Pei Zhang;Xiaoyue Du;Sixu Chen;Liang Zhang;Huiping Li;Yufei Zhang;Jinling Wang;Yulin Ding;Shuying Liu
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.61.1-61.13
    • /
    • 2024
  • Importance: Ovine pulmonary adenomatosis (OPA) and maedi-visna disease (MVD) are chronic and progressive infectious diseases in sheep caused by Jaagsiekte sheep retrovirus (JSRV) and maedi-visna virus (MVV), respectively. Objective: To investigate the pathological changes and conduct viral gene analysis of OPA and MVD co-occurrence in Inner Mongolia, China. Methods: Using gross pathology, histopathology, immunohistochemistry, ultrastructural pathology, PCR, and sequence analysis, we investigated the concurrent infection of JSRV and MVV in 319 Dorper rams slaughtered in a private slaughterhouse in Inner Mongolia, in 2022. Results: Of the 319 rams included, 3 showed concurrent JSRV and MVV infection. Gross lung pathology showed diffuse enlargement, consolidation, and greyish-white miliary nodules on the lung surface; the trachea was filled with a white foamy fluid; hilar and mediastinal lymph nodes were significantly enlarged. Histopathology results revealed typical OPA and MVD lesions in the lung tissue. Immunohistochemical results were positive for JSRV envelope protein (Env) in the tumor cells and MVV CA in alveolar macrophages. Transmission electron microscopy showed several virions and autophagosomes in the lung tissue, severely damaged mitochondria, and the induced mitophagy. Nucleotide sequences obtained for JSRV env and MVV gag showed the highest homology with the Inner Mongolian strains of JSRV env (JQ837489) and MVV gag (MW248464). Conclusions and Relevance: Our study confirmed that OPA and MVD co-occurrence and identified the pathological changes in Inner Mongolia, China, thereby providing references for the identification of concurrent JSRV and MVV infections.

Numerical Simulation of Irregular Airflow in OWC Wave Generation System Considering Sea Water Exchange (해수교환을 고려한 진동수주형 파력발전구조물에서 불규칙공기흐름에 관한 수치해석)

  • Lee, Kwang Ho;Park, Jung Hyun;Cho, Sung;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.128-137
    • /
    • 2013
  • Due to the global warming and air pollution, interest in renewable energies has increased in recent years. In particular, the crisis of the depletion of fossil energy resources in the near future has accelerated the renewable energy technologies. Among the renewable energy resources, oceans covering almost three-fourths of earth's surface have an enormous amount of energy. For this reason, various approaches have been made to harness the tremendous energy potential. In order to achieve two purposes: to improve harbor water quality and to use wave energy, this study proposed a sea water exchange structure applying an Oscillating Water Column (OWC) wave generation system that utilizes the air flow velocity induced by the vertical motion of water column in the air chamber as a driving force of turbine. In particular, the airflow velocity in the air chamber was estimated from the time variations of water surface profile computed by using 3D-NIT model based on the 3-dimensional irregular numerical wave tank. The relationship of the frequency spectrums between the computed airflow velocities and the incident waves was analyzed. This study also discussed the characteristics of frequency spectrums in the air chamber according to the presence of the structure, wave deformations by the structure, and the power of the water and air flows were also investigated. It is found that the phase difference exists in the time series data of water level fluctuations and air flow in the air chamber and the air flow power is superior to the fluid flow power.

Ultra Dry-Cleaning Technology Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 초순수 건식 세정기술)

  • Joung, Scung Nam;Kim, Sun Young;Yoo, Ki-Pung
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2001
  • With fast advancement of fine machineries and semiconductor industries in recent decades, the ultra-cleaning of organic chemicals, submicron particles from contaminated unit equipments and products such as silicon wafers becomes one of the most important steps for further advancement of such industries. To date, two kinds of ultra cleaning techniques are used; one is the wet-cleaning and the other is the dry cleaning. In case of wet cleaning, removal of organic contaminants and submicron particles is made by DIW with additives such as $H_2O_2$, $H_2SO_4$, HCl, $NH_4OH$ and HF, etc. While the wet cleaning method is most widely adopted for various occasions, it is inevitable to discharge significant amount of toxic waste waters in environment. Dry cleaning is an alternative method to mitigate environmental pollution of the wet cleaning with maintaining comparable degree of cleaning to the wet cleaning. Although there are various concept of dry cleaning have been devised, the dry cleaning with environmentally-benign solvent such as carbon dioxide proven to show high degree of cleaning from the contaminated porous surface as well as from the bare surface. Thus, special global attention has been placing on this technique since it has important advantages of simple process schemes and no environmentally concern, etc. Thus, this article critically reviews the state-of-the-art of the supercritical fluid drying with emphasis on the thermo-physical characteristics of the supercritical solvent, environmental gains compared to other dry cleaning methods, and the generic aspects of the basic design and processing engineering.

  • PDF