• 제목/요약/키워드: Fluid Shear Stress

검색결과 401건 처리시간 0.022초

제어 시스템 적용을 위한 ER유체의 빙햄 특성에 관한 기초적 연구 (A Fundamental Study on Bingham Characteristics of Electro-Rheological Fluids for Control System Application)

  • 장성철;정영빈;장길식
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.86-92
    • /
    • 2004
  • This paper describes the properties of temperature-viscosity characteristics of hydrous and anhydrous electro-rheological fluids containing starch and titanium particle in silicone oil ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed to the electrically insulating silicone oil induced when electric field is applied ER fluids under electric field control have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured the couette cell type rheometer as a function of electrlc fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electrie field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200 $s^{-1}$ in 2 minutes. The ER fluid's viscosity change is very small and stable at the temperature range of $40^{\circ}C$ to $60^{\circ}C$. Therefore, applications of a new ER fluid to control systems application are suitable.

  • PDF

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • 제48권4호
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구 (A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow)

  • 차경옥;김봉각;김재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.

함수계와 비수계 ER유체의 온도-점도 특성 (Temperature-Viscosity Characteristics of Hydrous and Anhydrous Electro-Rheological Fluids)

  • 이진우;장성철;염만오;김도태;박재범
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.451-456
    • /
    • 2002
  • This paper describes the properties of Temperature-Viscosity characteristics of hydrous and anhydrous ER fluids containing starch and titanium particle in silicone oil. ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed in the electrically insulating silicone oil induced when electric field is applied. ER fluids under electric field have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured on the couette cell type rheometer as a function of electric fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electric field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200/equation omitted/ in 2 minutes.

  • PDF

작동모드에 따른 MR유체의 특성 비교 (Characteristics of MR Fluids with Different Working Modes)

  • 이호근;김기선
    • 한국산학기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.107-113
    • /
    • 2001
  • 본 논문은 전단모드와 유동모드 하에서 자기유변유체의 빙햄 및 응답특성 실험을 실시한 것이다. 실험을 위해 전단모드와 유동모드에서 작동하는 두 가지 자기점도계가 제작되었으며, 자기유변유체는 로드사의 MRF-132LD가 사용되었다. 자기장의 변화에 따른 전단응력이 다양한 온도에서 실험적으로 실시되었다. 이로부터 직선보간법을 이용하여 항복전단응력을 도출하였으며, 온도에 따른 변화가 매우 적은 것을 확인했다. 또한 자기유변유체의 사각파에 대한 응답특성이 작동모드에 따라 비교되었다.

  • PDF

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

TPLS 혈액주머니 내의 3차원 비정상유동에 대한 수치해석 연구: 액추에이터 속도의 영향 (Numerical Study of 3D Unsteady Flow in a Blood Sac of TPLS: Effect of Actuator Speed)

  • 정기석;성현찬;박명수;고형종;심은보;민병구;박찬영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.206-211
    • /
    • 2003
  • This paper reports the numerical results for blood flow of the sac squeezed by moving actuator in the TPLS(Twin Pulse Life Support System). Blood flow in the sac is assumed to be 3-dimensional unsteady newtonian fluid. where the blood flow interacts with the sac, which is activated by the moving actuator. The flow field is simulated numerically by using the FEM code, ADINA. It is well known that hemolysis is closely related to shear stress acted on blood flow. According to this fact, we simulate four models with different speed for moving actuator and examine the distribution of shear stress for each model. Numerical results show that maximum shear stress is strongly dependent on the actuator speed.

  • PDF

유체전단응력에 의하여 3T3-L1 지방세포가 받는 영향 (Effects of Fluid Shear Stress on 3T3-L1 Preadipocytes)

  • 이정근;이영훈;진희원;이서현;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권4호
    • /
    • pp.168-174
    • /
    • 2018
  • Adipocytes affect obesity through the regulation of lipid metabolism. Physical loading is an important regulator of fat tissue. There are ongoing in vitro studies inducing mechanotransduction on 3T3-L1 preadipocytes with mechanical stimulus in order to treat obesity by inhibiting adipogenesis and provoking cell death. In this study, our goal was to suggest a new therapy for obesity by investigating whether fluid shear stress (FSS) changes transcription factors on 3T3-L1 related with adipogenesis and cell death. FSS loading was applied to 3T3-L1 preadipocytes at 1Pa and 1Hz. After loading, bright field images were taken and an immunofluorescence assay was conducted to observe actin stress fiber formation. Western blot analysis was conducted to identify the activation of the ERK pathway as well as the adipogenic factors, which including C/EBPs and $PPAR{\gamma}$. The expression of osteopontin, a protein related to inflammation in adipose tissue, and cell death related factors, Bax, Bcl-2, and Beclin, were also measured. Results showed that FSS stimulated the formation of actin stress fibers in 3T3-L1 and also that the activation of C/EBPs decreased significantly when compared with the control group. $PPAR{\gamma}$ activation in the 2 hour FSS group was lower than the 1 hour FSS group, which implied that the results were time dependent. Additionally, there were no differences in the expression of cell death factors after FSS loading. In summary, similar to other fibroblasts, the formation of actin stress fibers induced by mechanotransduction may affect the differentiation of 3T3-L1, leading to inhibition of adipogenesis and inflammation.

슬롯 링을 장착한 전기유변 스퀴즈 필름 댐퍼의 감쇠성능 해석 (Damping Performance Analysis of Electro-Rheological Squeeze Film Damper Sealed with Slotted Rings)

  • 정시영;김창호;이용복
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.75-83
    • /
    • 2000
  • The present paper proposes a new type of an electro-rheological squeeze film damper (ER SFD) of which the damping capacity can be controlled by the application of electric field. The new ER .SFD- is sealed with slotted rings having electrodes at the inside of the constant gap. The ER SFD can provent the problem of electric short which might be occurred in a previous ER SFD. Reynolds lubrication equation for a Newtonian fluid and the end leakage equation for ER fluids are numerically solved to get the pressure distributions and the damping coefficients of the ER SFD. The results show that the damping coefficients greatly increase with increasing the yield shear stress of ER fluid. In addition, the unbalance response analysis of a flexible rotor supported on the new ER SFD implies that the rotor system can be operated with the minimum of rotor amplitude and force transmissibility by controlling the yield shear stress of ER fluids properly.