• 제목/요약/키워드: Fluid Mixing Analysis

검색결과 196건 처리시간 0.03초

Lagrangian 입자추적모형을 이용한 부유성 오염물질의 혼합해석 (Mixing Analysis of Floating Pollutant Using Lagrangian Particle Tracking Model)

  • 서일원;박인환;김영도;한은진;추민호;문현생
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.383-392
    • /
    • 2013
  • In this research, mixing behavior of the floating pollutant such as oil spill accidents was analyzed by studying the advection-diffusion of GPS floaters at water surface. The LPT (Lagrangian Particle Tracking) model of EFDC (Environmental Fluid Dynamics Computer Code) was used to simulate the motion of the GPS floater tracer. In the field experiment, 35 GPS floaters were injected at the Samun Bridge of Nakdong River. GPS floaters traveled to downstream about 700 m for 90 minutes. The field data by the GPS floater experiments were compared with the simulation in order to calibrate the parameter of LPT model. The turbulent diffusion coefficient of LPT model was determined as $K_H/hu^*$ = 0.17 from the scatter diagram. The arrival time of peak concentration and transverse diffusion from the simulation results were similar with the experiments from the concentration curves. Numerical experiments for anticipation of damage from floating pollutant were conducted in the same reach of the Nakdong River and the results show that the pollutant cloud transported to the left bank where the Hwawon pumping station is located. For this reason, it is suggested that the proper action should be needed to maintain the safety of the water withdrawal at the Hwawon pumping station.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

SF6/N2 혼합기체의 DC 플라즈마 특성 분석 (The Analysis of DC Plasmas Characteristics on SFSF6 and N2 Mixture Gases)

  • 소순열
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1485-1490
    • /
    • 2014
  • $SF_6$ gas has been used for power transformers or gas insulated switchgears, because it has the superior insulation property and the stable structure chemically. It has been, however, one of global warming gases and required to reduce the its amount. Some papers have reported that its amount could be reduced by mixing with other gases, such as $N_2$, $CF_4$, $CO_2$ and $C_4F_8$ and their mixture gases would cause the synergy effect. In this paper, we investigated the characteristics of DC plasmas on $SF_6$ mixture gases with $N_2$ at atmospheric pressure. $N_2$ gas is one of cheap gases and has been reported to show the synergy effect with mixing $SF_6$ gas, even though $N_2$ plasmas have electron-positive characteristics. 38 kinds of $SF_6/N_2$ plasma particles, which consisted of an electron, two positive ions, five negative ions, 30 excitation and vibration particles, were considered in a one dimensional fluid simulation model with capacitively coupled plasma chamber. The results showed that the joule heating of $SF_6/N_2$ plasmas was mainly caused by positive ions, on the other hand electrons acted on holding the $SF_6/N_2$ plasmas stably. The joule heating was strongly generated near the electrodes, which caused the increase of neutral gas temperature within the chamber. The more $N_2$ mixed-ratio increased, the less joule heating was. And the power consumptions by electron and positive ions increased with the increase of $N_2$ mixed-ratio.

팽창재 종류 및 치환율에 따른 시멘트 페이스트의 레올로지 특성 (A Study on Rheological Properties of Cement Paste using Expansive Additives by Kind & Replacement Ratio)

  • 박춘영;강병희
    • 한국건축시공학회지
    • /
    • 제8권2호
    • /
    • pp.99-106
    • /
    • 2008
  • To improve concrete tensile strength and bending strength, New plan that have more economical and simple manufacture process is groped. By an alternative plan, chemical pre-stressed concrete is presented. In this study, we analyzed the rheological properties of cement paste with the kind and replacement ratio of k-type CSA type expansive additives that is used mainly in domestic. and we suggested that the algorithm of a mixing plan in the chemical pre-stressed concrete and from this, we presented the basic report for the right mixing plan. From the results, Flow increased more or less according to use of expansive additives. This phenomenon was observed by increasing paste amount that shows as substitution for expansive additives that specific gravity is smaller than that of cement. As linear regression a result supposing paste that mix expansive additives by Bingham plastic fluid. The shear rate and shear stress expressed high interrelationship. therefore, flow analysis of quantitative was available. The plastic viscosity following to replacement ratio of expansive additives is no change almost, the yield value is decreased in proportion to the added amount of expansive additives. Through this experiment, we could evaluate rheological properties of cement paste using the expansive additives. Hereafter by an additional experiment, we must confirm stability assessment of material separation by using the aggregate with the kind and replacement ratio of expansive additives.

상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가 (Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler)

  • 양주향;김정은;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System)

  • 최창호;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

3-D 전산유체를 이용한 급속혼화조 형상에 따른 난류 유동장 연구 (The Effects of Mixer Geometry on Hydraulic Turbulence : Computational Modeling)

  • 박노석;김성훈;박희경
    • 대한환경공학회지
    • /
    • 제22권7호
    • /
    • pp.1173-1182
    • /
    • 2000
  • 지금까지 급속혼화는 정수처리 공정 중에서 매우 중요한 공정으로 인식되어 왔다. 특히, 응집제의 원수내 확산은 급속혼화 공정에 이어지는 flocculation이나 filtration 공정에 지대한 영향을 미치게 되므로 지금까지 많은 연구자들이 혼화장치의 개발이나 효율적인 혼화방식에 관해 연구를 해왔다. 그러나 선행 연구자들은 급속혼화에 있어서 중요한 변수로 응집제 주입량, pH, 임펠러의 회전속도, 그리고 G값만을 고려하였으나, 실제 응집제와 콜로이드입자와의 충돌기회에 지대한 영향을 미치는 급속혼화 공정상에서 발생되는 난류장을 간과하였다. 특히 급속혼화에서의 난류의 발생은 G값에 전적으로 의지하여 난류장의 평균값으로 혼화조내의 난류를 표현하여 왔으며, 혼화조의 형상에 따라 달라지는 난류장 해석은 연구가 미약한 실정이다. 이에 본 연구는 급속혼화에서 난류장 해석의 중요성을 인식하고 혼화조의 형상 변화에 따라 달라지는 난류장을 전산유체 프로그램을 통하여 해석하였다. 그리고 혼화조 형상을 달리하며 jar-test를 수행한 결과 배플이 없는 원형 jar의 경우가 배플이 장착된 원형 jar나 Hudson jar보다 응집제의 확산에 따른 탁도 제거효율이 좋은 것으로 나타났으며, 전산유체 프로그램을 이용하여 각각 모사한 결과 벽면효과나 사류지역의 발생 등으로 배플이 없는 원형 jar가 혼화에 효과적인 난류장이 분포되는 것으로 확인되었다. 이 결과를 통해 혼화조 형상이 응집제의 확산이나 난류장의 발생에 영향을 미치는 것으로 결론 내릴 수 있다.

  • PDF

주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구 (Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel)

  • 김태용;이재용;김남진;김종보
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.