• 제목/요약/키워드: Fluid Inertia Force

검색결과 42건 처리시간 0.032초

Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석 (Dynamic Analysis of Metal Transfer in Pulsed-GMAW)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

단순지지 송수관의 동특성에 미치는 이동질량의 영향 (Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid)

  • 윤한익
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF

이동질량들을 가진 단순지지된 유체유동 파이프의 동특성 (Dynamic Behavior of a Simply Supported Fluid Flow Pipe with Moving Masses)

  • 윤한익;임순홍
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.132-140
    • /
    • 2002
  • A simply supported pipe conveying fluid and the moving masses upon it constitute this vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of the moving masses and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipw by numerical method. The velocities of fluid flow are considered within its critical values of the simply supported pipe without the moving masses upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. The dynamic deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving masses and the velocities of the moving masses and the fluid flow. When four or five regular interval masses move on the simply supported pipe conveying fluid, the amplitude of the simply supported pipe conveying fluid is small at low velocity of the masses, but at high velocity of the masses the deflection of midspan of the pipe is increased by coupling with the numbers and magnitude of the masses. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the number of moving masses.

이중 EHA의 제어 특성 개선 (Control-performance Improvement of Dual EHAs)

  • 이성렬;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.32-38
    • /
    • 2016
  • For this paper, the position-control performances of dual EHA(electro-hydrostatic actuator) systems were investigated according to two cases wherein the double-rod- and single-rod-type hydraulic cylinders were combined. Since the control performance is significantly dependent on the load conditions including external forces such as the inertia load, it is proposed here that the two sub-EHAs are driven by separate position and force controllers, instead of two identical position controllers. According to the simulation results, the best performance was achieved by the position-controlled single-rod-type EHA that was combined with a force-controlled double-rod-type EHA. As the force-controlled double-rod-type EHA compensated for the external loads on the position-controlled single-rod-type EHA, the position-control performance was not influenced by external forces including the inertia load. In addition, the position-controlled single-rod-type EHA contributed to the enhancement of the damping ratio by absorbing the pressure peaks through its internal accumulator. Due to the symmetrical piston areas, the double-rod-type EHA is more suitable for force control than the single-rod- type EHA.

Design of Torsion-typed Smooth Picture Actuator for DLP Projection TV

  • Moon, Yang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.564-568
    • /
    • 2006
  • Smooth picture module is operated by vibration to tilt the light from the DMD (digital micro mirror device) of DLP projection TV, which makes the screen of the TV smoother and DMD chip cost lower. To satisfy the vibration characteristics of smooth picture module, it is designed by optimizing moment of inertia, spring constant and damping coefficient, using structural and fluid dynamic simulation that showed a good agreement with experimental data. To reduce the material cost and moment of inertia, engineering plastic is used and the reliability is estimated. A VCM (voice coil motor) type actuator for smooth picture has to satisfy performance requirements such as higher driving force, lower power consumption, and lower cost. The initial design and optimization for VCM was performed using FE analysis. It allowed us to optimize the design of magnetic circuit of the proposed actuator to obtain higher force while maintaining a lower cost.

  • PDF

원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어 (3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control)

  • 강동희;김나경;강현욱
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

빙축 및 냉방열과정중 냉각유체와 Ice Ball사이의 열적 특성에 관한 실험적 연구 (An Experimental Study on Thermal Characteristics between Cooling Fluid and Ice Ball during Charging and Discharging Precesses)

  • 박경원;박이동;황영규;김윤제
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.193-205
    • /
    • 1996
  • This paper deals with experimental study on thermal characteristics that a cooling fluid is affected to ice ball as being measuring the temperature in storage tank and ice ball governing the rate of heat storage. Distributor was taken as inlet geometry factor. flow rate of cooling fluid which was a brine were 2, 4, and 6LPM, and 8, 10, and 12$^{\circ}C$ in the temperature difference for dynamic factors with respect to three ice ball types(103, 96, 76mm). In case of in flowing cooling fluid, since inertia force is suppressed by lower flow rate the amount of heat was transferred to ice ball by heat conduction high because density difference is high. And in case of larger ice ball, a long-term storage was available because reaching time at steady state is relatively long. consequently, smaller ice ball could be suitable to a short-term storage.

  • PDF

Sensitivity analysis of melt spinning process by frequency response

  • Hyun, Jae-Chun;Jung, Hyun-Wook;Lee, Joo-Sung
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.57-62
    • /
    • 2002
  • The sensitivity of the final filament to the ongoing sinusoidal disturbances has been Investigated in the viscoelastic spinning using frequency response method. Amplification ratios or gains of the spinline cross-sectional area at the take-up to any disturbances show resonant peaks along the frequency regime, where the frequencies at theme points directly correspond to the imaginary parts of the successive leading eigenvalues from the linear stability analysis. As shown in Jung et al. (1999) and Lee et al (2001), the sensitivity results on the effect of various process conditions such as spinline cooling and fluid viscoelasticity, obtained by dynamic transient simulation have been corroborated in this study. That is, increasing spinline cooling makes the system less sensitive to disturbances, thus stabilizes the spinning. Also, an increasing viscoelasticity for extension-thickening fluids decreases the sensitivity of the spinning. i.e., stabilizing the system, where, as it increases the sensitivity of the spinning of extension-thinning fluids. Furthermore, it has been found in the present study that the inertia force as one of secondary forces causes the system to be more stabile or less sensitive to process disturbances.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF