• Title/Summary/Keyword: Fluid Capacity

Search Result 564, Processing Time 0.025 seconds

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Effects of different amylose to amylopectin ratios on rumen fermentation and development in fattening lambs

  • Zhao, Fangfang;Ren, Wen;Zhang, Aizhong;Jiang, Ning;Liu, Wen;Wang, Faming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1611-1618
    • /
    • 2018
  • Objective: The objective of this experiment was to examine the effects of different amylose/amylopectin ratios on rumen fermentation and development of fattening lambs. Methods: Forty-eight 7-day-old male Small-tailed Han sheep${\times}$Northeast fine wool sheep were randomly assigned to four treatments of dietary amylose/amylopectin ratios (0.12, 0.23, 0.24, and 0.48 in tapioca starch, corn starch, wheat starch and pea starch diets, respectively). Three lambs from each treatment were slaughtered at 21, 35, 56, and 77 days of age to determine the rumen fermentation and development. Results: Compared with tapioca starch diet, the pea starch diet significantly increased the concentration of ammonia nitrogen in the ruminal fluid of lambs but significantly decreased the bacterial protein content. At 56 and 77 d, the rumen propionate concentration tended to be greatest in the tapioca starch group than in other groups. The rumen butyrate concentration was the greatest in lambs fed on pea starch compared with those fed on other starch diets. Furthermore, the pea starch diet significantly stimulated rumen development by increasing the papillae height, width and surface area in the rumen ventral or dorsal locations in lambs. However, different amylose/amylopectin ratios diets did not significantly affect the feed intake, body weight, average daily gain, the relative weight and capacity of the rumen in lambs with increasing length of trial periods. Conclusion: Lambs early supplemented with a high amylose/amylopectin ratio diet had favourable morphological development of rumen epithelium, which was not conducive to bacterial protein synthesis.

STUDY ON THE PREVENTION METHOD FOR HEAT ACCUMULATION FOR PERSONAL RAPID TRANSIT (PRT) VEHICLE UNDER BODY (PRT 차량하부 열부하 저감방안 도출 연구)

  • Kwon, S.B.;Song, J.H.;Kang, S.W.;Jeong, R.G.;Kim, H.B.;Lee, C.H.;Seo, D.K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2013
  • Personal Rapid Transit (PRT) is the emerging personal transport vehicle operating on the loop automatically. The PRT system utilize the electrical power from super capacity or battery, it is important to manage the power or energy. In this regards, the management of high temperature occurred by the operation of system is significantly important to prevent from serious damage of component. In this study, we studied the adequate shape of underbody which can reduce the heat accumulation by pickup coil and condenser using natural air cooling. We suggested the additional air pathway, air inlet and flow separator to decrease the temperature of the heat source components. It was found that suggested system can decrease the temperature of PRT under body by 16% during the static mode and by 10% during the running mode at 30km/h. It is expected that the findings of this study will feed into final design of newly built Korean PRT vehicle.

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.

Electrokinetic Extraction of Metals from Marine Sediment (중금속으로 오염된 해양퇴적토의 전기동력학적 정화)

  • Kim, Kyung-Jo;Yoo, Jong-Chan;Yang, Jung-Seok;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains (반응성 배수재를 이용한 중금속 오염토양의 정화효율 분석)

  • Park, Jeongjun;Choi, Changho;Shin, Eunchul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2013
  • This paper presents the analysis condition of remediation technique of contaminated fine-grained soil and physical properties of bio-degradable drain for analysis site applicability using bio-degradable drain method. As the result, two kinds of developed degradable drains (cylindricality shaped and harmonica shaped) are satisfied the Korean Industrial Standard. And the cylindricality shaped drain has an excellent discharge capacity than that of another one. By the results of laboratory test, the citric acid is chosen as the washing agent because it has low toxicity, so it is able to minimize harmful influence to environment. Furthermore the subject contaminants were selected as Cd, Cu and Pb. Based on the field pilot test results, the most remedial efficiency is the use of reactive material applied in bio-degradable drain method with the process of injecting the washing agent and extraction of contaminated fluid.

A Study on Hybrid Heating System with Anti-Superheating Devices (과열방지장치가 설치된 복합열원 난방시스템에 관한 연구)

  • Park, Youn-Cheol;Ko, Gwang-Soo;Han, Yu-Ry
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • The previous study was conducted to develop an air source multi heat pump system that could be operated with the solar collector and air source heat exchangers as heat source of the system. There is a winter-sowing problems in air source multi heat pump system when the outdoor temperature goes down under freezing point. The winter-sowing problem was solved by adapting R-22 refrigerant as working fluid in the previous study. However, when the system operated at high temperature, another problems are come out such as overheating of the solar collector outlet which lead to the superheat of the compressor inlet of the heat pump system. The condition could deteriorates a compressor in some case. In this study, we installed the anti-superheating devices on the previously developed system. As results of system performance test, COP of the system with anti-superheating technique is 2.4. It is a little improved COP compare to previous study's 2.23. In the results of multi heat source heating system, during operating solar collector, COP is relatively high between $200\;W/m^2$ and $400\;W/m^2$ solar intensity. It is recommended to extend the study on performance optimization with balancing the solar collect and capacity of compressor at higher solar irradiation conditions.

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.