• 제목/요약/키워드: Fluid & Pneumatic Power Control System

검색결과 31건 처리시간 0.021초

관로부의 동특성을 고려한 공기압 압력용기의 압력제어 (A Study on the Pressure Control of a Pneumatic Pressure Vessel Considering Dynamic Characteristics of Pneumatic Transmission Line)

  • 장지성
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.90-96
    • /
    • 2001
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel considering dynamic characteristics of pneumatic transmission line is proposed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing states of the fluid. So, if the fixed gain controller is designed based on a fixed model, the performance of the control system could be destabilized or degraded. The controller designed in this study is composed of two parts. The one is to reject modelling error based on the disturbance observer, the other is to obtain the control performance. The control results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model of the transmission line. Therefore, the designed controller can be utilized for the performance improvement of the pressure control system using compressible fluid such as air and gas

  • PDF

공압시스템의 설계 파라미터 최적화 (Optimization of Design Parameters of a Pneumatic System)

  • 엄태준
    • 유공압시스템학회논문집
    • /
    • 제2권4호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents optimization of a pneumatic control system whose design parameters have been optimized so that the desired dynamic characteristics of cylinder position was obtained. The pneumatic system is used as transferring and stacking equipment for solid freeform fabrication system which has been widely used in design verification applications. The pneumatic system mainly consists of pneumatic control valves and cylinders. The system was modeled by using several principles for pneumatic components. The system was optimized to obtain dynamic performance with enough damping to reduce cylinder vibration. A fuzzy controller has been applied to fulfill the dynamic performance requirements of the pneumatic system. The simulation results show that the fuzzy controller is more effective than a PD controller.

  • PDF

전달 관로의 전달특성을 고려한 공기압 실린더 구동장치의 모델링에 관한 연구 (A Study on the Modeling of a Position Control System with a Pneumatic Cylinder Considering Transfer Characteristics of a Transmission Line)

  • 강보식;장지성
    • 유공압시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.20-25
    • /
    • 2004
  • In this study, a position control characteristics of pneumatic cylinder with transmission line is analyzed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing stiles of the fluid the diameter and the length of the line. But, the effect of the change of dynamic characteristics of transmission line by the flowing states on the position control characteristics can be neglected because of the friction force of the pneumatic cylinder. So, We assume that the position control characteristics is affected by the diameter and length of the transmission line. The experimental results according to the change of parameter of the transmission line show that the relation between the parameter of the transmission line and the position control characteristics of pneumatic cylinder driving system with the transmission line.

  • PDF

전달관로를 고려한 공기압 구동장치의 힘 제어에 관한 연구 (Force Control of a Pneumatic Driving System With a Long Transmission Line)

  • 장지성
    • 유공압시스템학회논문집
    • /
    • 제8권3호
    • /
    • pp.8-13
    • /
    • 2011
  • In the present study, a robust controller has been designed to control force for a pneumatic driving system considering the effect of a transmission line. Transfer characteristics of pneumatic transmission line should be changed according to the velocity of the air going through the transmission line. The designed controller is composed of two parts. The one is a feedback controller, which is composed of a stabilizing filter, a compensating filter of modelling error and a nominal model of the force control system, to compensate the influence of transmission line and improve the feedback characteristics of the control system, and, the other is a feedforward controller to achieve the control performance. Control results with the designed controller show that the robustness and performance of the control system are improved compared to the control results with a fixed gain controller.

열전달 특성을 고려한 공기압 압력제어계의 감압제어특성 해석 (Analysis of Decompression Control Characteristics of Pneumatic Pressure Control System Considering Heat Transfer Characteristics)

  • 장지성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.90-95
    • /
    • 2006
  • Pneumatic control systems have been mainly used as a high speed operating system. Therefore, state change of air in a control volume was assumed to be adiabatic change and, pneumatic control systems have been analyzed by using this assumption. Especially, when absolute value of pressure change in the control volume is small, there is a tendency to neglect effect of temperature change on pneumatic control system because temperature change owing to pressure change is small. In this study, an effect of temperature change of air on the decompression control process was analyzed by considering change of mass flow rate, and heat transfer characteristics between air in the chamber and the chamber wall. As a result, this study could confirm that a slight temperature change of the air in the pneumatic pressure control system can influence on the dynamic characteristics of pressure response, and pressure control performance.

  • PDF

LMI를 이용한 공기압 실린더의 상태제어기 설계 (LMI-Based Controller Design of Pneumatic Cylinder)

  • 장지성;지상원;김영복
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2008
  • Pneumatic driving systems have hard non-linear characteristic and large friction force compared with driving power. Hence, it cannot be robust against parameter uncertainties, modelling error, disturbance and noise. In this study, we apply a mixed $H_2/H_{\infty}$ control to the generalized plant for a pneumatic driving apparatus system including parameter uncertainty and disturbance. In order to design the $H_2/H_{\infty}$ controller, we use the LMI technique. To evaluate control performance and robust stability of the designed controller, we compare it with a conventional controller such as PVA(Position-Velocity-Acceleration state controller) using the simulation results. As a result, it can be known that designed controller shows better robust stability than the conventional controller.

  • PDF

자동차 공기현가 공압회로 해석 및 대체회로 설계 (Analysis and Alternative Circuit Design of Pneumatic Circuit for An Automotive Air Suspension)

  • 이재천
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.17-25
    • /
    • 2008
  • This study presents an analytical model of the pneumatic circuit of an air suspension system to analyze the characteristics of vehicle height control. The analytical model was developed through the co-simulation of Simulink(air spring) and HyPneu(pneumatic circuit). Variant effective area of air spring and flow coefficients of pneumatic valves were estimated experimentally prior to the system test, and utilized in simulation. One-comer test apparatus was established using the components of commercial air suspension products. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the frictional loss of conduit and heat dissipation which were ignored in this study need to be considered in future study. As an application example of proposed analytical model, an alternative pneumatic circuit of air suspension to conventional WABCO circuit was evaluated. The comparison of simulation results of WABCO circuit and alternative circuit show that proposed analytical model of co-simulation in this study is useful for the study of pneumatic system of automotive air suspension.

  • PDF

공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어 (Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model)

  • 장지성;유원상
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

공기압 구동장치를 이용한 정밀위치제어 (Accurate Positioning with a Pneumatic Driving Apparatus)

  • 장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.