• Title/Summary/Keyword: Fluctuation effects

Search Result 468, Processing Time 0.024 seconds

Effects of temperature-fluctuation in a refrigerator on antioxidative index and storage qualities of various foods (냉장실의 온도 변동 편차가 과채류의 항산화 지표 및 어육류의 저장 품질에 미치는 영향)

  • Park, Hee Jung;Lee, Myung Ju;Lee, Hye Ran
    • Journal of Nutrition and Health
    • /
    • v.50 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • Purpose: The objective of this study was to examine the association of temperature-fluctuation with freshness quality in various foods. Methods: We investigated the effects of storage conditions on antioxidant activities of cherries and romaine lettuce during storage at $0.7{\pm}0.6^{\circ}C$, $1.2{\pm}1.4^{\circ}C$, and $1.6{\pm}2.8^{\circ}C$. Cherries and romaine lettuce were stored for a period of 9 days and 7 days, respectively. We also analyzed the effects of storage conditions on fresh quality of beef and salmon during storage at $-0.3{\pm}0.8^{\circ}C$, $-0.6{\pm}2.3^{\circ}C$, and $-1.5{\pm}4.4^{\circ}C$. Both of them were stored for a period of 14 days. Results: The amount of water loss was highest in beef, and the microbial count was also the highest at $-1.5{\pm}4.4^{\circ}C$. In the case of salmon, there was no difference in water loss according to storage, and TBA value was significantly increased at $-1.5{\pm}4.4^{\circ}C$. Moisture retention was the highest at $0.7{\pm}0.6^{\circ}C$ in both romaine lettuce and cherry samples. The contents of polyphenol and flavonoid were significantly higher in cherries, and content of polyphenols in romaine lettuce was significantly higher at $0.7{\pm}0.6^{\circ}C$ (p < 0.05). DPPH activity decreased in the order of $0.7{\pm}0.6^{\circ}C$ > $1.2{\pm}1.4^{\circ}C$ > $1.6{\pm}2.8^{\circ}C$ over 7 days. Conclusion: The results indicate that temperature-fluctuation may affect qualities of foods stored in a refrigerator.

A Study of the Economic Evaluation for the Agricultural Infrastructure Projects (농업기반정비사업 편익산정을 위한 지표 개선방안)

  • Kim, Young-Joo;Choi, Byeong-Han;Jo, Rae-Cheong;Choi, Young-Wan;Kim, Yun-Shik
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.139-150
    • /
    • 2014
  • The purposes of this research are to review the current economic measures to be used to assess the economic effects of agricultural infrastructure projects, to find some effects not included into the current measures, and to suggest new additional economic measures. So thus, economic assessment for agricultural infrastructure projects has been criticized to be overestimated. For example, some research reported that the projects enhanced rice productivity by 20% or 30%. We suggest four new measures to evaluate economic effects of agricultural infrastructure projects: (1) enhancement in productivity, (2) switchover from low-income crops to high-income crops, (3) rises in land price, and (4) lower fluctuation in production.

THE EFFECTS OF WALL BOUNDARY CONDITIONS ON MASS TRANSFER IN TURBULENT PIPE FLOW (난류 파이프 유동 내 물질전달에서의 경계조건 영향)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.42-52
    • /
    • 2012
  • Direct Numerical Simulation(DNS) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of wall boundary conditions on the concentration fields at $Re_{\tau}$=180 based on friction velocity and pipe radius. Fully developed turbulent pipe flows for Sc=0.71 are studied with two different wall boundary conditions, namely, constant mass flux and constant wall concentration. The mean concentration profiles and turbulent mass fluxes obtained from the present DNS are in good agreement with the previous numerical results currently available. To investigate the effects of wall boundary condition on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuation, turbulent mass fluxes and higher-order statistics(Skewness and Flatness factor) are compared for the two cases. Furthermore, the budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effects of wall boundary conditions on the turbulent mass transfer.

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

The Study on Musculoskeletal Effects of Heel Types (구두 굽의 형태가 인체의 근골격계에 미치는 영향에 관한 연구)

  • Lee, Chang-Min;Jeong, Eun-Hui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2004
  • In terms of women engaged in clerical job. working time of the workers who mainly keep standing with their high-heeled shoes on has been increasing. According]y. they are exposed to many kinds of foot deformation caused by loads of lower back and lower extremities due to high-heeled shoes. The type of heels they usually wear are diverse though the hight is same. In this study. we investigated most women's favorite styles of shoes concerned with heights. types and contact areas of the heels. Hence. we designed three kinds of shoes for an experiment: their contact areas with ground are 1 cm2. 2-4 cm2 and over 9 cm2 according to the heel heights. respectively. To investigate the biomechanical effects. analysis of motion and EMG were applied to the experiments. In addition. foot pressure distribution was measured for more detailed analysis. Six healthy young women were participated in this experiments. The result showed the heel becoming higher and narrower increased not only fluctuation of CBM(Center of Body Mass). but also the load of low back muscle and lower extremities. Accordingly. there was significant difference among types of the heel in terms of the role supporting load of the body. though the height is same. Especially. the difference among the pressures on a foot was most significant. In conclusion. we verified biomechanical effects are related with the contact area of a heel with ground as well as the hight.

Layout-Based Inductance Model for On-Chip Power Distribution Grid Structures (레이아웃 기반 온-칩 전력 분배 격자 구조의 인덕턴스 모델 개발 및 적용)

  • Jo, JeongMin;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.259-269
    • /
    • 2012
  • With the lower supply voltage and the higher operating frequency in integrated circuits, the analysis of the power distribution network (PDN) including on-chip inductances becomes more important. In this paper, an effective inductance extraction method for a regular on-chip power grid structure is proposed. The loop inductance model applicable to chip layout is proposed and the inductance extraction tool using the proposed inductance model based on post layout RC circuits is developed. The accuracy of the proposed loop model and the developed tool is verified by comparing the test circuit simulation results with those from the partial element equivalent circuit (PEEC) model. The voltage fluctuation from the RLC circuits extracted by the developed tool was examined for the analysis of on-chip inductance effects. The significance of on-chip power grid inductance was investigated by the co-simulation of chip-package-PCB.

Changes in Dynamic Characteristics of Monopile-Type Offshore Structures According to Tidal Environments and Boundary Conditions (다양한 조류 환경 및 경계 조건에 따른 모노파일형 해상구조물의 동특성 변화 분석)

  • Jung, Byung-Jin;Park, Jong-Woong;Yi, Jin-Hak;Park, Jin-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • Because a change in the natural frequencies of a structure indicates structural health problems, monitoring the natural frequencies crucial. Long-term measurement for the Uldolmok tidal current power plant structure has shown that its natural frequencies fluctuate with a constant cycle twice a day. In this study, lab-scale tests to investigate the causes of these natural frequency fluctuations were carried out in a circulating water channel. Three independent variables in the tests that could affect the fluctuation of the natural frequencies were the water level, current velocity, and boundary condition between the specimen and the bottom of the circulating water channel. The experimental results were verified with numerical ones using ABAQUS. It was found that the fluctuation of the natural frequencies was governed by a decrease in stiffness due to the boundary condition much more than the effect of added mass. In addition, it was found that the natural frequency would decrease with an increase in the tidal current velocity because of its nonlinearity when the boundary condition was severely deteriorated due to damage.

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

An Empirical Study on the Economic Development Effects on Kazakhstan Focusing on the Macroeconomic Indices: International Oil Price, Interest Rate, Real Exchange Rate (카자흐스탄 경제발전에 대한 실증연구 : 국제유가·이자율·실질환율을 중심으로)

  • Hwang, Yun-Seop;Kim, Kyung-Hee;Kim, Soo-Eun
    • International Area Studies Review
    • /
    • v.14 no.1
    • /
    • pp.77-97
    • /
    • 2010
  • Recently, countries on the Caspian Sea were had heavily interested due to instability of international resource market. These countries having been developed basing on energy exports, especially Kazakhstan have drastically grown during a decades. However economy, heavily relied on the exports of energy, is influenced on fluctuation in the international energy price as well as sometimes exposed at Dutch disease. These days, Kazakhstan, increased trade and investment with Korea, has been on the rise as new supplier for energy. Therefore, economic change in Kazakhstan can be an important issue. In this paper, we analyze relations among oil price, interest rate, and real exchange rate during sample period from January 1999 to December 2008 expanding Balasa-Samuelson model. Empirical results present that oil price, interest rate, and real exchange rate mutually keep their balance. Eventually, we find out Kazakhstan has exposed at Dutch disease since oil price and interest rate have negative impacts on real exchange rate respectively.